Abstracts of Papers


Book Description




New Horizons in Low-Dimensional Electron Systems


Book Description

In Bird of Passage by Rudolf Peierls, we find a paragraph in which he de scribes his Cambridge days in the 1930s: On these [relativistic field theory] problems my main contacts were Dirac, and the younger theoreticians. These included in particular Nevill (now Sir Nevill) Mott, perhaps the friendliest among many kind and friendly people we met then. Professor Kamimura became associated with Sir Rudolf Peierls in the 1950s, when he translated, with his colleagues, Peierls's 1955 textbook, Quantum Theory of Solids, into Japanese. This edition, to which Sir Rudolf himself contributed a preface, benefitted early generations of Japanese solid state physicists. Later in 1974/5, during a sabbatical year spent at the Cavendish Laboratory, Professor Kamimura met and began a long association with Sir Nevill Mott. In particular, they developed ideas for disordered systems. One of the outcomes is a paper coauthored by them on ESR-induced variable range hopping in doped semiconductors. A series of works on disordered systems, together with those on two-dimensional systems, have served as building blocks for Physics of Interacting Electrons in Disordered Systems, in the International Series of Monographs on Physics, coauthored by Aoki and published in 1989 by the Oxford University Press. Soon after Professor Kamimura obtained a D. Sc. in 1959 for the work on the ligand field theory under the supervision ofMasao Kotani, his strong con nections in the international physical community began when he worked at the Bell Telephone Laboratories in 1961/64.










Electron Spectroscopies Applied to Low-Dimensional Structures


Book Description

The effect of reduced dimensionality, inherent at the crystallographic level, on the electronic properties of low dimensional materials can be dramatic, leading to structural and electronic instabilities—including supercond- tivity at high temperatures, charge density waves, and localisation—which continue to attract widespread interest. The layered transition metal dichalcogenides have engaged attention for many years, partly arising from the charge density wave effects which some show and the controlled way in which their properties can be modified by intercalation, while the development of epitaxial growth techniques has opened up promising areas based on dichalcogenide heterostructures and quantum wells. The discovery of high-temperature superconducting oxides, and the realisation that polymeric materials too can be exploited in a controlled way for various opto-electronic applications, have further sti- lated interest in the effects of structural dimensionality. It seems timely therefore to draw together some strands of recent research involving a range of disparate materials which share some common char- teristics of low dimensionality. This resulting volume is aimed at researchers with specialist interests in the particular materials discussed but who may also wish to examine the related phenomena observed in different systems, and at a more general solid state audience with broad interests in electronic properties and low dimensional phenomena. Space limitations have required us to be selective as regards particular materials, though we have managed to include those as dissimilar as polymeric semiconductors, superconducting oxides, bronzes and layered chalcogenides.







Solitons & Polarons in Conducting Polymers


Book Description

Polyacetylence, (CH)x is the simplest conjugated polymer. Prestine polyacetylence is a good insulator, whereas its highly doped version exhibits metal-like electrical conductivity. This book gives a detailed introduction to this rapidly-developing field is given along with a collection of original papers. The main purpose is to help chemists and physicists grasp the main ideas and most important facts; an expert may also find it useful as a reference volume.




Supercarbon


Book Description

The information revolution of the twentieth century was brought about by microelectronics based on a simple and common material, silicon. Although silicon will continue to be of central importance in the next century, carbon, silicon's upstairs neighbor in the periodic table, will also be of great impor tance in future technology. Carbon has more flexible bonding and hence has various unique physical, chemical and biological properties. It has two types of bonding, sp3 and sp2, in diamond and graphite, respectively. The existence of the latter, "7r-electron bonding" , is responsible for carbon's versatile tal ents. Those materials having extended 7r-electron clouds are called '7r-electron materials'. They include graphite, carbon nanotubes, fullerenes and various carbonaceous materials. They may be called "supercarbon" because of their fabulous multiformity and versatile properties. This volume is a status report on the synthesis, properties and appli cations of 7r-electron materials, representing an updated proceedings of the International Workshop on 7r-Electron Materials held at the Northwestern University,'Evanston, Illinois, USA, August 13-14,1996. The Workshop was organized jointly by the Japan Science and Technology Corporation (JST) and the Materials Research Center at the Northwestern University (NWU) in order to provide an opportunity for scientists and engineers to meet and dis cuss the latest advances in this field and in commemoration of the Yoshimura 7r-Electron Materials Project, one of Japan's national projects in the JST's ERATO (Exploratory Research for Advanced Technology) program.