Rice


Book Description

Rice is a staple food for half of the worlds population mostly in Asia. Productivity of rice has largely been improved since the Green Revolution in 1960s. Further improvement of rice yield is necessary to keep pace with population growth, which is a challenging task for breeders. This book, Rice - Germplasm, Genetics and Improvement, as its name implies, comprehensively reviews current knowledge in germplasm exploration, genetic basis of complex traits, and molecular breeding strategies in rice. In the germplasm part, we highlight the application of wild rice in rice breeding. In the genetics part, most of the complex traits related with yield, disease, quality have been covered. In the improvement part, Chinese experiences in hybrid rice breeding have been summarized together with many molecular breeding practices scattering in different chapters.




Breeding for Disease Resistance


Book Description

There is an increasing need for an understanding of the fundamental processes involved in the mechanisms by which disease resistances are introduced into crop plants. This book provides a wide-ranging coverage of the successes and failures of the classical techniques; it describes the advances towards modern technology and addresses the problems of pathogen variation. Crop plants that are considered include: cereals (wheat, barley, rice), potatoes, vegetables and soft fruits.




Rice Diseases


Book Description

Virus and MLO diseases; Bacterial diseases; Fungus diseases - foliage diseases; Fungus diseases - diseases of stem, leaf sheath and root; Fungus diseases - seedling diseases; Fungus diseases - diseases of grain and inflorescence; Diseases caused by nematodes; Physiological diseases.




Advances in Genetics, Genomics and Control of Rice Blast Disease


Book Description

Rice blast, caused by the fungal pathogen Magnaporthe grisea, is one of the most destructive rice diseases worldwide and destroys enough rice to feed more than 60 million people annually. Due to high variability of the fungal population in the field, frequent loss of resistance of newly-released rice cultivars is a major restraint in sustainable rice production. In the last few years, significant progress has been made in understanding the defense mechanism of rice and pathogenicity of the fungus. The rice blast system has become a model pathosystem for understanding the molecular basis of plant-fungal interactions due to the availability of both genomes of rice and M. grisea and a large collection of genetic resources. This book provides a complete review of the recent progress and achievements on genetic, genomic and disease control of the disease. Most of the chapters were presented at the 4th International Rice Blast Conference held on October 9-14, 2007 in Changsha, China. This book is a valuable reference not only for plant pathologists and breeders working on rice blast but also for those working on other pathysystems in crop plants.




Rice Blast Disease


Book Description

Pathogen biology. Cell biology of pathogenesis. Signalling systems and gene expression regulating appressorium formation in magnaporthe grisea. Genetic regulation of sporulation in the rice blast fungus. Genetic interactions in magnaporthe grisea that affect cultivar specific avirulence/virulence on rice. Genomic structure and variability in pyricularia grisea. Molecular genetic approach to the study of cultivar specificity in the rice blast fungus. Avirulence genes and mechanisms of genetic instability in the rice blast fungus. Host plant resistance. International collaboration on breeding for resistance to rice blast. Present knowledge of rice resistance genetics and strategies for magnaporthe grisea pathogenicity and avirulence gene analysis. Mapping of blast resistance genes in rice. Molecular genetic analysis fo the rice bacterial blight resistance locus, Xa21. Current status for gene transfer into rice utilizing variety-independent delivery systems. Pathogen population dynamics and utilization of host plant resistance. Virulencecharacteristics of genetic families of pyricularia grisea in Colombia. Race-specific and rate-reducing resistance to rice blast in US rice cultivars. A strategy for accumulating genes for partial resistance to blast disease in rice within a conventional breeding program. Lineage exclusion: a proposal for linking blast population analysis to resistance breeding. Use of host genetic diversity to control cereal diseases: implications for rice blast. Figs, wasps, nematodes and sitting ducks: rice blast, from the outside looking in. Epidemiology, loss assessment, and management. The economic impact of rice blast disease in China. Current rice blast epidemics and their management in Thailand. Rice blast in west Africa: its nature and control. Understanding and modeling leaf blast effects on crop physiology and yield. Methodology for quantifying rice yield effects of blast. The epidemiological basis for blast management. Using simulation models to explore better strategies for the management of blast disease in temperate rice pathosystems. Blast management in high input, high yield potential, temperate rice ecosystems. Practical approaches to rice blast management in tropical monsoon ecosystems, with special reference to Bangladesh. Rice breeding programs, blast epidemics and blast management in the United States. Strategies for the discovery of rice blast fungicides. Biological control of rice leaf blast. Farmers' perspectives. Crop-livestock interactions: implications for crop improvement in sustainable agriculture. Assessing indigenous and traditional knowledge in farming systems. Rice, reason, and resistance: a comparative study of farmers' vs. Scientists' perception and strategies.




Comprehensive and Molecular Phytopathology


Book Description

This book offers a collection of information on successive steps of molecular 'dialogue' between plants and pathogens. It additionally presents data that reflects intrinsic logic of plant-parasite interactions. New findings discussed include: host and non-host resistance, specific and nonspecific elicitors, elicitors and suppressors, and plant and animal immunity. This book enables the reader to understand how to promote or prevent disease development, and allows them to systematize their own ideas of plant-pathogen interactions.* Offers a more extensive scope of the problem as compared to other books in the market* Presents data to allow consideration of host-parasite relationships in dynamics and reveals interrelations between pathogenicity and resistance factors* Discusses beneficial plant-microbe interactions and practical aspects of molecular investigations of plant-parasite relationships* Compares historical study of common and specific features of plant immunity with animal immunity




Blast Disease of Cereal Crops


Book Description

Blast is an important foliar disease that infects the majority of cereal crops like rice, finger millet, pearl millet, foxtail millet and wheat, and thus resulting in a huge economic impact. The pathogen is responsible for causing epidemics in many crops and commonly shifts to new hosts. Magnaporthe spp. is the most prominent cause of blast disease on a broad host range of grasses including rice as well as other species of poaceae family. To date, 137 members of Poaceae hosting this fungus have been described in Fungal Databases. This book provides information on all blast diseases of different cereal crops. The pathogen evolves quickly due to its high variability, and thus can quickly adapt to new cultivars and cause an epidemic in a given crop. Some of the topics covered here include historical perspectives, pathogen evolution, host range shift, cross-infectivity, and pathogen isolation, use of chemicals fungicides, genetics and genomics, and management of blast disease in different cereal crops with adoption of suitable methodologies.In the past two decades there have been significant developments in genomics and proteomics approaches and there has been substantial and rapid progress in the cloning and mapping of R genes for blast resistance, as well as in comparative genomics analysis for resolving delineation of Magnaporthe species that infect both cereals and grass species. Blast disease resistance follows a typical gene-for-gene hypothesis. Identification of new Avr genes and effector molecules from Magnaporthe spp. can be useful to understand the molecular mechanisms involved in the fast evolution of different strains of this fungal genus. Advances in these areas may help to reduce the occurrence of blast disease by the identification of potential R genes for effective deployment. Additionally, this book highlights the importance of blast disease that infects different cereal hosts in the context of climate change, and genomics approaches that may potentially help in understanding and applying new concepts and technologies that can make real impact in sustainable management of blast disease in different cereal crops.




Durable Resistance in Crops


Book Description

Plant diseases and pests are a major constraint to agricultural production despite the various measures used to control them. Chemical control, although often e~~ective, may pose environmental hazards and is relatively expensive, especially in developing countries where it may be completely uneconomic. Control through genetically mediated resistance to diseases and pests, is both cheap and environmentally sa~e and at present most diseases and pests o~ staple ~ood crops are controlled through some form of resistance. One of the basic problems in the use of resistance is its ~re quent lack of durability; very often a type of resistance is used that 'breaks down' after a certain period. The temporary nature of this resistance, due to the development of new strains of pest or pathogen able to overcome it, has seriously hindered the improvement o~ the yield potential of many crops as a continuing effort is needed to replace old cultivars who resistance has failed, with new ones. Following Vanderplank's now classical publications (1963, 1968) which differentiated horizontal and vertical resistance, studies on several host-parasite systems have shown that di~ferent types of resistance can be distinguished genetically and epidemiologically, and on the ability o~ the pests or pathogens to adapt to them. A knowledge of how resistance operates at the population level has also opened up possibilities of 'managing' relatively simple resistance types in such a way that a stable host-pathogen system can be pro duced with a minimum of crop loss.







Wheat Blast


Book Description

Wheat Blast provides systematic and practical information on wheat blast pathology, summarises research progress and discusses future perspectives based on current understanding of the existing issues. The book explores advance technologies that may help in deciding the path for future research and development for better strategies and techniques to manage the wheat blast disease. It equips readers with basic and applied understanding on the identification of disease, its distribution and chances of further spread in new areas, its potential to cause yield losses to wheat, the conditions that favour disease development, disease prediction modelling, resistance breeding methods and management strategies against wheat blast. Features: Provides comprehensive information on wheat blast pathogen and its management under a single umbrella Covers disease identification and diagnostics which will be helpful to check introduction in new areas Discusses methods and protocol to study the different aspects of the disease such as diagnostics, variability, resistance screening, epiphytotic creation etc. Gives deep insight on the past, present and future outlook of wheat blast research progress This book’s chapters are contributed by experts and pioneers in their respective fields and it provides comprehensive insight with updated findings on wheat blast research. It serves as a valuable reference for researchers, policy makers, students, teachers, farmers, seed growers, traders, and other stakeholders dealing with wheat.