Host Guest Complex Chemistry Macrocycles


Book Description

The scientific and practical interest in coronands (crown ethers), cryptands, podands as complexing agents for cations as well as for anions and neutral low molecular species is undeniable 1,2). The chemistry of crown compounds is steadily increasing. About 250 original papers dealing with crown chemistry appeared only in 1980. New molecules· with crown ether properties are constantly synthesized and new applications discov,?red. Owing to lack of space, only a small number of the original publications is men tioned here. Thus, in the literature compilation only some, but relevant works are selected for each chapter. Whenever possible, reference is made to reviews or review-like articles alone by means of which origin,al works can be consulted. The reviews given under ref. 1) are considered to be the most relevant. The formulae presented in the figures should be understood as representative structures outlining a specific field. 2 Classification of Oligo-/Multidentate Neutral Ligands and of their Complexes Today, a distinction is made between the classical ring oligoethers (crown ethers) and monocyclic coronands, oligocyclic spherical cryptands and the acyclic podands with respect to topological aspects 3). This classification and the topology are illustrated in Fig. 1, each figure representing the minimum number of donor atoms and chain segments characteristic of each class of compounds. Multidentate mono cyclic ligands with any type of donor atoms are called coronands ("crown compounds"), while the term crown ether should be reserved for cyclic oligoethers exclusively containing oxygen as donor atom.




Cucurbiturils and Related Macrocycles


Book Description

This book provides a complete overview of cucurbituril chemistry, covering fundamental aspects including history, synthesis and host-guest chemistry.







Macrocyclic Chemistry


Book Description

Macrocyclic Chemistry: Current Trends and Future Perspectives illustrates essential concepts in this expanding research field covering both basic and applied studies. Written by well-known experts from around the world, the topics of the chapters range from new macrocyclic architectures with different functions and self-assembly processes through to the modeling and dynamics of such systems. The content also reflects on application possibilities in analytical chemistry, separation processes, material preparation and medicine. Thus this book serves as a creative source of research strategies and methodic tools. Providing an excellent overview of the field, this book will be a valuable resource for researchers in industry and academic institutions as well as for teachers of science and graduate students. This book is devoted to the long-standing tradition of the International Symposia on Macrocyclic Chemistry (ISMC) and published to coincide with the 30th meeting, Dresden, Germany.




Supramolecular Chemistry in Water


Book Description

Provides deep insight into the concepts and recent developments in the area of supramolecular chemistry in water Written by experts in their respective field, this comprehensive reference covers various aspects of supramolecular chemistry in water?from fundamental aspects to applications. It provides readers with a basic introduction to the current understanding of the properties of water and how they influence molecular recognition, and examines the different receptor types available in water and the types of substrates that can be bound. It also looks at areas to where they can be applied, such as materials, optical sensing, medicinal imaging, and catalysis. Supramolecular Chemistry in Water offers five major sections that address important topics like water properties, molecular recognition, association and aggregation phenomena, optical detection and imaging, and supramolecular catalysis. It covers chemistry and physical chemistry of water; water-mediated molecular recognition; peptide and protein receptors; nucleotide receptors; carbohydrate receptors; and ion receptors. The book also teaches readers all about coordination compounds; self-assembled polymers and gels; foldamers; vesicles and micelles; and surface-modified nanoparticles. In addition, it provides in-depth information on indicators and optical probes, as well as probes for medical imaging. -Covers, in a timely manner, an emerging area in chemistry that is growing more important every day -Addresses topics such as molecular recognition, aggregation, catalysis, and more -Offers comprehensive coverage of everything from fundamental aspects of supramolecular chemistry in water to its applications -Edited by one of the leading international scientists in the field Supramolecular Chemistry in Water is a one-stop-resource for all polymer chemists, catalytic chemists, biochemists, water chemists, and physical chemists involved in this growing area of research.




The Chemistry of Macrocyclic Ligand Complexes


Book Description

This book contains an overview of complex formation by macrocyclic ligand systems. The study of macrocyclic chemistry represents a major area of activity which impinges on a range of other areas in both chemistry and biochemistry. The field has characteristically yielded many interesting and unusual compounds. The text discusses the structures and properties of macrocyclic compounds; the synthesis of macrocycles; polyether crown and related systems; metal-ion and molecular recognition (host-guest chemistry); as well as kinetic, thermodynamic and electrochemical aspects of a range of macrocyclic systems. A discussion of the different categories of naturally occurring macrocycles is also included. Specialist and non-specialist alike will find this a useful text. Apart from serving as a convenient reference for established workers in the field, it should also prove useful to new graduate students as well as to researchers from other areas who seek a general introduction to the subject. The topics discussed also provide a suitable basis for a senior undergraduate or graduate course in macrocyclic chemistry and inorganic complexes.




Halogen Bonding in Solution


Book Description

Long-awaited on the importance of halogen bonding in solution, demonstrating the specific advantages in various fields - from synthesis and catalysis to biochemistry and electrochemistry! Halogen bonding (XB) describes the interaction between an electron donor and the electrophilic region of a halogen atom. Its applicability for molecular recognition processes long remained unappreciated and has mostly been studied in solid state until recently. As most physiological processes and chemical reactions take place in solution, investigations in solutions are of highest relevance for its use in organic synthesis and catalysis, pharmaceutical chemistry and drug design, electrochemistry, as well as material synthesis. Halogen Bonding in Solution gives a concise overview of halogen bond interactions in solution. It discusses the history and electronic origin of halogen bonding and summarizes all relevant examples of its application in organocatalysis. It describes the use of molecular iodine in catalysis and industrial applications, as well as recent developments in anion transport and binding. Hot topic: Halogen bonding is an important interaction between molecules or within a molecule. The field has developed considerably in recent years, with numerous different approaches and applications having been published. Unique: There are several books on halogen bonding in solid state available, but this will be the first one focused on halogen bonding in solution. Multi-disciplinary: Summarizes the history and nature of halogen bonding in solution as well as applications in catalysis, anion recognition, biochemistry, and electrochemistry. Aimed at facilitating exciting future developments in the field, Halogen Bonding in Solution is a valuable source of information for researchers and professionals working in the field of supramolecular chemistry, catalysis, biochemistry, drug design, and electrochemistry.







Dynamic Covalent Chemistry


Book Description

The first and only exhaustive review of the theory, thermodynamic fundamentals, mechanisms, and design principles of dynamic covalent systems Dynamic Covalent Chemistry: Principles, Reactions, and Applications presents a comprehensive review of the theory, thermodynamic fundamentals, mechanisms, and design principles of dynamic covalent systems. It features contributions from a team of international scientists, grouped into three main sections covering the principles of dynamic covalent chemistry, types of dynamic covalent chemical reactions, and the latest applications of dynamic covalent chemistry (DCvC) across an array of fields. The past decade has seen tremendous progress in (DCvC) research and industrial applications. The great synthetic power and reversible nature of this chemistry has enabled the development of a variety of functional molecular systems and materials for a broad range of applications in organic synthesis, materials development, nanotechnology, drug discovery, and biotechnology. Yet, until now, there have been no authoritative references devoted exclusively to this powerful synthetic tool, its current applications, and the most promising directions for future development. Dynamic Covalent Chemistry: Principles, Reactions, and Applications fills the yawning gap in the world literature with comprehensive coverage of: The energy landscape, the importance of reversibility, enthalpy vs. entropy, and reaction kinetics Single-type, multi-type, and non-covalent reactions, with a focus on the advantages and disadvantages of each reaction type Dynamic covalent assembly of discrete molecular architectures, responsive polymer synthesis, and drug discovery Important emerging applications of dynamic covalent chemistry in nanotechnology, including both material- and bio-oriented directions Real-world examples describing a wide range of industrial applications for organic synthesis, functional materials development, nanotechnology, drug delivery and more Dynamic Covalent Chemistry: Principles, Reactions, and Applications is must-reading for researchers and chemists working in dynamic covalent chemistry and supramolecular chemistry. It will also be of value to academic researchers and advanced students interested in applying the principles of (DCvC) in organic synthesis, functional materials development, nanotechnology, drug discovery, and chemical biology.




Metallomacrocycles


Book Description

A comprehensive overview of metallomacrocycles from designing complex functional metallosupramolecular systems to their applications.