Superpave Mix Design


Book Description




Research and Application of Hot In-Place Recycling Technology for Asphalt Pavement


Book Description

Research and Application of Hot In-Place Recycling Technology for Asphalt Pavement is the first comprehensive book on the topic that presents over two decades of theoretical and practical experience gained in China. The book gives comprehensive coverage of HIPR, including pavement evaluation, distress analysis, mix design, processes and equipment selection, implementation and acceptance criteria. In eight chapters, this book covers HIPR from theoretical and practical viewpoints, and provides detailed case-studies based on real-world experience. This book includes everything engineers need to apply HIPR to improve sustainability and reduce disruption during the maintenance and repair of asphalt. - Presents, for the first time in English, decades of experience and research on Hot in-Place Recycling Technology (HIPR) for asphalt pavements - Considers all aspects of HIPR, giving engineers all they need to use the technique for road maintenance and repair - Details how HIPR drastically improves the sustainability of asphalt and reduces disruption to traffic during repair and maintenance work - Includes detailed case studies from thirty years of HIPR in China, giving context and practical know-how




Eco-efficient Pavement Construction Materials


Book Description

Eco-efficient Pavement Construction Materials acquaints engineers with research findings on new eco-efficient pavement materials and how they can be incorporated into future pavements. Divided into three distinctive parts, the book emphasizes current research topics such as pavements with recycled waste, pavements for climate change mitigation, self-healing pavements, and pavements with energy harvesting potential. Part One considers techniques for recycling, Part Two reviews the contribution of pavements for climate change mitigation, including cool pavements, the development of new coatings for high albedo targets, and the design of pervious pavements. Finally, Part Three focuses on self-healing pavements, addressing novel materials and design and performance. Finally, the book discusses the case of pavements with energy harvesting potential, addressing different technologies on this field. - Offers a clear and concise lifecycle assessment of asphalt pavement recycling for greenhouse gas emission with temporal aspects - Applies key research trends to green the pavement industry - Includes techniques for recycling waste materials, the design of cool pavements, self-healing mechanisms, and key steps in energy harvesting




Cold Recycling


Book Description




Asphalt Cold Mix Manual


Book Description







Hot In-place Recycling of Asphalt Concrete


Book Description

This synthesis will be of interest to administrators, pavement designers, highway, material, research, and specification engineers, and others interested in economical methods for reconstructing or rehabilitating asphalt concrete pavements. It describes the processes and equipment used for hot in-place recycling of asphalt concrete and provides information on mix designs, performance, and guidelines for its effective use. A significant amount of the information provided is based on the current practices of state highway agencies. As such, numerous case histories are included in the report.




AASHTO Guide for Design of Pavement Structures, 1993


Book Description

Design related project level pavement management - Economic evaluation of alternative pavement design strategies - Reliability / - Pavement design procedures for new construction or reconstruction : Design requirements - Highway pavement structural design - Low-volume road design / - Pavement design procedures for rehabilitation of existing pavements : Rehabilitation concepts - Guides for field data collection - Rehabilitation methods other than overlay - Rehabilitation methods with overlays / - Mechanistic-empirical design procedures.




Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields


Book Description

Innovations in Road, Railway and Airfield Bearing Capacity – Volume 1 comprises the first part of contributions to the 11th International Conference on Bearing Capacity of Roads, Railways and Airfields (2022). In anticipation of the event, it unveils state-of-the-art information and research on the latest policies, traffic loading measurements, in-situ measurements and condition surveys, functional testing, deflection measurement evaluation, structural performance prediction for pavements and tracks, new construction and rehabilitation design systems, frost affected areas, drainage and environmental effects, reinforcement, traditional and recycled materials, full scale testing and on case histories of road, railways and airfields. This edited work is intended for a global audience of road, railway and airfield engineers, researchers and consultants, as well as building and maintenance companies looking to further upgrade their practices in the field.




Proceedings of the RILEM International Symposium on Bituminous Materials


Book Description

This volume highlights the latest advances, innovations, and applications in bituminous materials and structures and asphalt pavement technology, as presented by leading international researchers and engineers at the RILEM International Symposium on Bituminous Materials (ISBM), held in Lyon, France on December 14-16, 2020. The symposium represents a joint effort of three RILEM Technical Committees from Cluster F: 264-RAP “Asphalt Pavement Recycling”, 272-PIM “Phase and Interphase Behaviour of Bituminous Materials”, and 278-CHA “Crack-Healing of Asphalt Pavement Materials”. It covers a diverse range of topics concerning bituminous materials (bitumen, mastics, mixtures) and road, railway and airport pavement structures, including: recycling, phase and interphase behaviour, cracking and healing, modification and innovative materials, durability and environmental aspects, testing and modelling, multi-scale properties, surface characteristics, structure performance, modelling and design, non-destructive testing, back-analysis, and Life Cycle Assessment. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster new multidisciplinary collaborations.