Engineering in Pre-college Settings


Book Description

In science, technology, engineering, and mathematics (STEM) education in pre-college, engineering is not the silent "e" anymore. There is an accelerated interest in teaching engineering in all grade levels. Structured engineering programs are emerging in schools as well as in out-of-school settings. Over the last ten years, the number of states in the US including engineering in their K-12 standards has tripled, and this trend will continue to grow with the adoption of the Next Generation Science Standards. The interest in pre-college engineering education stems from three different motivations. First, from a workforce pipeline or pathway perspective, researchers and practitioners are interested in understanding precursors, influential and motivational factors, and the progression of engineering thinking. Second, from a general societal perspective, technological literacy and understanding of the role of engineering and technology is becoming increasingly important for the general populace, and it is more imperative to foster this understanding from a younger age. Third, from a STEM integration and education perspective, engineering processes are used as a context to teach science and math concepts. This book addresses each of these motivations and the diverse means used to engage with them.Designed to be a source of background and inspiration for researchers and practitioners alike, this volume includes contributions on policy, synthesis studies, and research studies to catalyze and inform current efforts to improve pre-college engineering education. The book explores teacher learning and practices, as well as how student learning occurs in both formal settings, such as classrooms, and informal settings, such as homes and museums. This volume also includes chapters on assessing design and creativity.




How People Learn


Book Description

First released in the Spring of 1999, How People Learn has been expanded to show how the theories and insights from the original book can translate into actions and practice, now making a real connection between classroom activities and learning behavior. This edition includes far-reaching suggestions for research that could increase the impact that classroom teaching has on actual learning. Like the original edition, this book offers exciting new research about the mind and the brain that provides answers to a number of compelling questions. When do infants begin to learn? How do experts learn and how is this different from non-experts? What can teachers and schools do-with curricula, classroom settings, and teaching methodsâ€"to help children learn most effectively? New evidence from many branches of science has significantly added to our understanding of what it means to know, from the neural processes that occur during learning to the influence of culture on what people see and absorb. How People Learn examines these findings and their implications for what we teach, how we teach it, and how we assess what our children learn. The book uses exemplary teaching to illustrate how approaches based on what we now know result in in-depth learning. This new knowledge calls into question concepts and practices firmly entrenched in our current education system. Topics include: How learning actually changes the physical structure of the brain. How existing knowledge affects what people notice and how they learn. What the thought processes of experts tell us about how to teach. The amazing learning potential of infants. The relationship of classroom learning and everyday settings of community and workplace. Learning needs and opportunities for teachers. A realistic look at the role of technology in education.




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.




Science and Engineering for Grades 6-12


Book Description

"Students learn by doing. Science investigation and engineering design provide an opportunity for students to do. When students engage in science investigation and engineering design, they are able to engage deeply with phenomena as they ask questions, collect and analyze data, generate and utilize evidence, and develop models to support explanations and solutions. Research studies demonstrate that deeper engagement leads to stronger conceptual understandings of science content than what is demonstrated through more traditional, memorization-intensive approaches. Investigations provide the evidence student need to construct explanations for the causes of phenomena. Constructing understanding by actively engaging in investigation and design also creates meaningful and memorable learning experiences for all students. These experiences pique students' curiosity and lead to greater interest and identity in science"--Preface.







Handbook of Research-Based Practices for Educating Students with Intellectual Disability


Book Description

Now in its second edition, this comprehensive handbook emphasizes research-based practices for educating students with intellectual disability across the life course, from early childhood supports through the transition to adulthood. Driven by the collaboration of accomplished, nationally recognized professionals of varied approaches, lived experience and expertise, and philosophies, the book is updated with new theory and research-based practices that have been shown to be effective through multiple methodologies, to help readers select interventions and supports based on the evidence of their effectiveness. Considering the field of intellectual disability from a transdisciplinary perspective, it integrates a greater focus on advancing equity in educational outcomes for students. This book is a professional resource and graduate level text for preservice and in-service educators, psychologists, speech/language therapists and other clinicians involved in the education of children, youth, and adults with intellectual disability.




Building STEM Skills Through Environmental Education


Book Description

Environmental studies provide an ideal opportunity for children of any age to build critical and creative thinking skills while also building skills in science, technology, engineering, and mathematics (STEM). Exploring issues related to sustainability and environmental concerns permits learners to identify problems, develop research questions, gather and analyze data, develop possible solutions, and disseminate this information to others. Despite the advantages of green education and its ability to improve student achievement, there is a gap in understanding the interplay between curriculum and instruction and how this affects teaching and learning. Building STEM Skills Through Environmental Education is an essential publication that addresses gaps in the understanding of green education and offers educators meaningful and comprehensive examples of environmental and sustainability education in the Pre-K through secondary grade levels. The book offers a unique combination of foundational understanding of green education and chapters that illustrate the principles and impact of green education across grade levels, content areas, assessment systems, instructional strategies, technology, and other related topics. It is ideally designed for educators, curriculum developers, instructional designers, advocates, policymakers, researchers, academicians, and students.




Creating Learning Settings


Book Description

Creating Learning Settings examines the design and implementation of learning settings informed by the newest, most expansive insights into how people learn in the post-industrial age. Educators today are tasked with moving beyond the fixed, traditional practices that have long dominated formal schooling and becoming more dynamic and strategic in arranging learners, facilitators, resources, on-site and virtual environments, and learning experiences. Integrating contemporary theoretical approaches and empirical studies, this book offers a systematic approach to creating settings that leverage the physical, digital, resource, and social dimensions necessary to support learning.




Learning Science in Informal Environments


Book Description

Informal science is a burgeoning field that operates across a broad range of venues and envisages learning outcomes for individuals, schools, families, and society. The evidence base that describes informal science, its promise, and effects is informed by a range of disciplines and perspectives, including field-based research, visitor studies, and psychological and anthropological studies of learning. Learning Science in Informal Environments draws together disparate literatures, synthesizes the state of knowledge, and articulates a common framework for the next generation of research on learning science in informal environments across a life span. Contributors include recognized experts in a range of disciplines-research and evaluation, exhibit designers, program developers, and educators. They also have experience in a range of settings-museums, after-school programs, science and technology centers, media enterprises, aquariums, zoos, state parks, and botanical gardens. Learning Science in Informal Environments is an invaluable guide for program and exhibit designers, evaluators, staff of science-rich informal learning institutions and community-based organizations, scientists interested in educational outreach, federal science agency education staff, and K-12 science educators.




Identifying and Supporting Productive STEM Programs in Out-of-School Settings


Book Description

More and more young people are learning about science, technology, engineering, and mathematics (STEM) in a wide variety of afterschool, summer, and informal programs. At the same time, there has been increasing awareness of the value of such programs in sparking, sustaining, and extending interest in and understanding of STEM. To help policy makers, funders and education leaders in both school and out-of-school settings make informed decisions about how to best leverage the educational and learning resources in their community, this report identifies features of productive STEM programs in out-of-school settings. Identifying and Supporting Productive STEM Programs in Out-of-School Settings draws from a wide range of research traditions to illustrate that interest in STEM and deep STEM learning develop across time and settings. The report provides guidance on how to evaluate and sustain programs. This report is a resource for local, state, and federal policy makers seeking to broaden access to multiple, high-quality STEM learning opportunities in their community.