Nuclear Engineering


Book Description

Nuclear Engineering Mathematical Modeling and Simulation presents the mathematical modeling of neutron diffusion and transport. Aimed at students and early career engineers, this highly practical and visual resource guides the reader through computer simulations using the Monte Carlo Method which can be applied to a variety of applications, including power generation, criticality assemblies, nuclear detection systems, and nuclear medicine to name a few. The book covers optimization in both the traditional deterministic framework of variational methods and the stochastic framework of Monte Carlo methods. Specific sections cover the fundamentals of nuclear physics, computer codes used for neutron and photon radiation transport simulations, applications of analyses and simulations, optimization techniques for both fixed-source and multiplying systems, and various simulations in the medical area where radioisotopes are used in cancer treatment. - Provides a highly visual and practical reference that includes mathematical modeling, formulations, models and methods throughout - Includes all current major computer codes, such as ANISN, MCNP and MATLAB for user coding and analysis - Guides the reader through simulations for the design optimization of both present-day and future nuclear systems







Nuclear Power Plant Design and Analysis Codes


Book Description

Nuclear Power Plant Design and Analysis Codes: Development, Validation, and Application presents the latest research on the most widely used nuclear codes and the wealth of successful accomplishments which have been achieved over the past decades by experts in the field. Editors Wang, Li,Allison, and Hohorst and their team of authors provide readers with a comprehensive understanding of nuclear code development and how to apply it to their work and research to make their energy production more flexible, economical, reliable and safe.Written in an accessible and practical way, each chapter considers strengths and limitations, data availability needs, verification and validation methodologies and quality assurance guidelines to develop thorough and robust models and simulation tools both inside and outside a nuclear setting. This book benefits those working in nuclear reactor physics and thermal-hydraulics, as well as those involved in nuclear reactor licensing. It also provides early career researchers with a solid understanding of fundamental knowledge of mainstream nuclear modelling codes, as well as the more experienced engineers seeking advanced information on the best solutions to suit their needs. - Captures important research conducted over last few decades by experts and allows new researchers and professionals to learn from the work of their predecessors - Presents the most recent updates and developments, including the capabilities, limitations, and future development needs of all codes - Incudes applications for each code to ensure readers have complete knowledge to apply to their own setting




Porous Media


Book Description

This book examines the relationship between transport properties and pore structure of porous material. Models of pore structure are presented with a discussion of how such models can be used to predict the transport properties of porous media. Portions of the book are devoted to interpretations of experimental results in this area and directions for future research. Practical applications are given where applicable, and are expected to be useful for a large number of different fields, including reservoir engineering, geology, hydrogeology, soil science, chemical process engineering, biomedical engineering, fuel technology, hydrometallurgy, nuclear reactor technology, and materials science. - Presents mechanisms of immiscible and miscible displacement (hydrodynamic dispersion) process in porous media - Examines relationships between pore structure and fluid transport - Considers approaches to enhanced oil recovery - Explores network modeling and perolation theory




Modelling of Nuclear Reactor Multi-physics


Book Description

Modelling of Nuclear Reactor Multiphysics: From Local Balance Equations to Macroscopic Models in Neutronics and Thermal-Hydraulics is an accessible guide to the advanced methods used to model nuclear reactor systems. The book addresses the frontier discipline of neutronic/thermal-hydraulic modelling of nuclear reactor cores, presenting the main techniques in a generic manner and for practical reactor calculations.The modelling of nuclear reactor systems is one of the most challenging tasks in complex system modelling, due to the many different scales and intertwined physical phenomena involved. The nuclear industry as well as the research institutes and universities heavily rely on the use of complex numerical codes. All the commercial codes are based on using different numerical tools for resolving the various physical fields, and to some extent the different scales, whereas the latest research platforms attempt to adopt a more integrated approach in resolving multiple scales and fields of physics. The book presents the main algorithms used in such codes for neutronic and thermal-hydraulic modelling, providing the details of the underlying methods, together with their assumptions and limitations. Because of the rapidly expanding use of coupled calculations for performing safety analyses, the analysists should be equally knowledgeable in all fields (i.e. neutron transport, fluid dynamics, heat transfer).The first chapter introduces the book's subject matter and explains how to use its digital resources and interactive features. The following chapter derives the governing equations for neutron transport, fluid transport, and heat transfer, so that readers not familiar with any of these fields can comprehend the book without difficulty. The book thereafter examines the peculiarities of nuclear reactor systems and provides an overview of the relevant modelling strategies. Computational methods for neutron transport, first at the cell and assembly levels, then at the core level, and for one-/two-phase flow transport and heat transfer are treated in depth in respective chapters. The coupling between neutron transport solvers and thermal-hydraulic solvers for coarse mesh macroscopic models is given particular attention in a dedicated chapter. The final chapter summarizes the main techniques presented in the book and their interrelation, then explores beyond state-of-the-art modelling techniques relying on more integrated approaches. - Covers neutron transport, fluid dynamics, and heat transfer, and their interdependence, in one reference - Analyses the emerging area of multi-physics and multi-scale reactor modelling - Contains 71 short videos explaining the key concepts and 77 interactive quizzes allowing the readers to test their understanding




Molten Salt Reactors and Thorium Energy


Book Description

Molten Salt Reactors and Thorium Energy, Second Edition is a fully updated comprehensive reference on the latest advances in MSR research and technology. Building on the successful first edition, Tom Dolan and the team of experts have fully updated the content to reflect the impressive advances from the last 5 years, ensuring this book continues to be the go-to reference on the topic. This new edition covers progress made in MSR design, details innovative experiments, and includes molten salt data, corrosion studies and deployment plans. The successful case studies section of the first edition have been removed, expanded, and fully updated, and are now published in a companion title called Global Case Studies on Molten Salt Reactors. Readers will gain a deep understanding of the advantages and challenges of MSR development and thorium fuel use, as well as step-by-step guidance on the latest in MSR reactor design. Each chapter provides a clear introduction, covers technical issues and includes examples and conclusions, while promoting the sustainability benefits throughout. - A fully updated comprehensive handbook on Molten Salt Reactors and Thorium Energy, written by a team of global experts - Covers MSR applications, technical issues, reactor types and reactor designs - Includes 3 brand new chapters which reflect the latest advances in research and technology since the first edition published - Presents case studies on molten salt reactors which aid in the transition to net zero by providing abundant clean, safe energy to complement wind and solar powe




Handbook of Generation IV Nuclear Reactors


Book Description

Handbook of Generation IV Nuclear Reactors, Second Edition is a fully revised and updated comprehensive resource on the latest research and advances in generation IV nuclear reactor concepts. Editor Igor Pioro and his team of expert contributors have updated every chapter to reflect advances in the field since the first edition published in 2016. The book teaches the reader about available technologies, future prospects and the feasibility of each concept presented, equipping them users with a strong skillset which they can apply to their own work and research. - Provides a fully updated, revised and comprehensive handbook dedicated entirely to generation IV nuclear reactors - Includes new trends and developments since the first publication, as well as brand new case studies and appendices - Covers the latest research, developments and design information surrounding generation IV nuclear reactors




Nuclear Reactor Physics


Book Description

The third, revised edition of this popular textbook and reference, which has been translated into Russian and Chinese, expands the comprehensive and balanced coverage of nuclear reactor physics to include recent advances in understanding of this topic. The first part of the book covers basic reactor physics, including, but not limited to nuclear reaction data, neutron diffusion theory, reactor criticality and dynamics, neutron energy distribution, fuel burnup, reactor types and reactor safety. The second part then deals with such physically and mathematically more advanced topics as neutron transport theory, neutron slowing down, resonance absorption, neutron thermalization, perturbation and variational methods, homogenization, nodal and synthesis methods, and space-time neutron dynamics. For ease of reference, the detailed appendices contain nuclear data, useful mathematical formulas, an overview of special functions as well as introductions to matrix algebra and Laplace transforms. With its focus on conveying the in-depth knowledge needed by advanced student and professional nuclear engineers, this text is ideal for use in numerous courses and for self-study by professionals in basic nuclear reactor physics, advanced nuclear reactor physics, neutron transport theory, nuclear reactor dynamics and stability, nuclear reactor fuel cycle physics and other important topics in the field of nuclear reactor physics.




Thermal and Flow Design of Helium-cooled Reactors


Book Description

This source book provides both an overview of gas-cooled reactors and a detailed look at the high-temperature gas-cooled reactor (HTGR). Taking a worldwide perspective, this book reviews the early development of the HTGR and explores potential future development and applications.




Physics of High-Temperature Reactors


Book Description

Physics of High-Temperature Reactors focuses on the physics of high-temperature reactors (HTRs) and covers topics ranging from fuel cycles and refueling strategies to neutron cross-sections, transport and diffusion theory, and resonance absorption. Spectrum calculations and cross-section averaging are also discussed, along with the temperature coefficient and reactor control. Comprised of 16 chapters, this book begins with a general description of the HTR core as well as its performance limitations. The next chapter deals with general considerations about HTR physics, including quantities to be determined and optimized in the design of nuclear reactors. Potential scattering and resonance reactions between neutrons and atomic nuclei are then considered, together with basic aspects of transport and diffusion theory. Subsequent chapters explore methods for solving the diffusion equation; slowing-down and neutron thermalization in graphite; HTR core design, fuel management, and cost calculations; and core dynamics and accident analysis. The final chapter describes the sequence of reactor design calculations. This monograph is written primarily for students of HTR physics who are preparing to enter the field as well as technologists of other disciplines who are working on the system.