The Red Blood Cell


Book Description







The Impact of Food Bioactives on Health


Book Description

“Infogest” (Improving Health Properties of Food by Sharing our Knowledge on the Digestive Process) is an EU COST action/network in the domain of Food and Agriculture that will last for 4 years from April 4, 2011. Infogest aims at building an open international network of institutes undertaking multidisciplinary basic research on food digestion gathering scientists from different origins (food scientists, gut physiologists, nutritionists...). The network gathers 70 partners from academia, corresponding to a total of 29 countries. The three main scientific goals are: Identify the beneficial food components released in the gut during digestion; Support the effect of beneficial food components on human health; Promote harmonization of currently used digestion models Infogest meetings highlighted the need for a publication that would provide researchers with an insight into the advantages and disadvantages associated with the use of respective in vitro and ex vivo assays to evaluate the effects of foods and food bioactives on health. Such assays are particularly important in situations where a large number of foods/bioactives need to be screened rapidly and in a cost effective manner in order to ultimately identify lead foods/bioactives that can be the subject of in vivo assays. The book is an asset to researchers wishing to study the health benefits of their foods and food bioactives of interest and highlights which in vitro/ex vivo assays are of greatest relevance to their goals, what sort of outputs/data can be generated and, as noted above, highlight the strengths and weaknesses of the various assays. It is also an important resource for undergraduate students in the ‘food and health’ arena.




Vertebrate Red Blood Cells


Book Description

This book reviews the respiratory function of vertebrate red cells. I have defined the phrase "respiratory function" broadly to include, in addition to the actual oxygen and carbon dioxide transport, erythropoiesis, haemoglobin synthesis, red cell structure, the deformability of red cells in circulation, ion and substrate transport across the cell membrane, cellular metabolism, and control of cellular volume and pH. All of these aspects of the red cell function may affect gas transport between the respiratory epithelia and the tissues. Throughout the book, I have tried to relate our current knowledge about the nucleated red cell function to the wealth of information about the function of mammalian red cells. However, whenever possible, I have placed the emphasis on the nucleated red cell function for two reasons. First, the erythro cytes of 90% of vertebrate species are nucleated, and, second, nucleated red cell function has not been reviewed earlier in a single volume. This being the case, I have tried to make the reference list as complete as I could with regard to nucleated red cells. I hope that the approach adopted is useful for both com parative and human physiologists. Many people have contributed to the making of this book directly or in directly. Antti Soivio started me in this field. Prof. Henrik Wallgren has always encouraged fresh scientific ideas in his department. My present ideas of red cell function have been influenced by work carried out with Prof. Roy E.




Mast Cells and Basophils


Book Description

Mast Cells and Basophils will be essential reading for immunologists, biochemists and medical researchers. Detailed chapters cover all aspects of mast cell and basophil research, from cell development, proteases, histamine, cysteinyl leukotrienes, physiology and pathology to the role of these cells in health and disease. Chapters also discuss the clinical implications of histamine receptor antagonists.




Regulation of Tissue Oxygenation, Second Edition


Book Description

This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.




Janeway's Immunobiology


Book Description

The Janeway's Immunobiology CD-ROM, Immunobiology Interactive, is included with each book, and can be purchased separately. It contains animations and videos with voiceover narration, as well as the figures from the text for presentation purposes.