Human Motion Capture and Identification for Assistive Systems Design in Rehabilitation


Book Description

HUMAN MOTION CAPTURE AND IDENTIFICATION FOR ASSISTIVE SYSTEMS DESIGN IN REHABILITATION A guide to the core ideas of human motion capture in a rapidly changing technological landscape Human Motion Capture and Identification for Assistive Systems Design in Rehabilitation aims to fill a gap in the literature by providing a link between sensing, data analytics, and signal processing through the characterisation of movements of clinical significance. As noted experts on the topic, the authors apply an application-focused approach in offering an essential guide that explores various affordable and readily available technologies for sensing human motion. The book attempts to offer a fundamental approach to the capture of human bio-kinematic motions for the purpose of uncovering diagnostic and severity assessment parameters of movement disorders. This is achieved through an analysis of the physiological reasoning behind such motions. Comprehensive in scope, the text also covers sensors and data capture and details their translation to different features of movement with clinical significance, thereby linking them in a seamless and cohesive form and introducing a new form of assistive device design literature. This important book: Offers a fundamental approach to bio-kinematic motions and the physiological reasoning behind such motions Includes information on sensors and data capture and explores their clinical significance Links sensors and data capture to parameters of interest to therapists and clinicians Addresses the need for a comprehensive coverage of human motion capture and identification for the purpose of diagnosis and severity assessment of movement disorders Written for academics, technologists, therapists, and clinicians focusing on human motion, Human Motion Capture and Identification for Assistive Systems Design in Rehabilitation provides a holistic view for assistive device design, optimizing various parameters of interest to relevant audiences.




Media Networks


Book Description

A rapidly growing number of services and applications along with a dramatic shift in users' consumption models have made media networks an area of increasing importance. Do you know all that you need to know?Supplying you with a clear understanding of the technical and deployment challenges, Media Networks: Architectures, Applications, and Standard




Computational Science and Its Applications – ICCSA 2022 Workshops


Book Description

The eight-volume set LNCS 13375 – 13382 constitutes the proceedings of the 22nd International Conference on Computational Science and Its Applications, ICCSA 2022, which was held in Malaga, Spain during July 4 – 7, 2022. The first two volumes contain the proceedings from ICCSA 2022, which are the 57 full and 24 short papers presented in these books were carefully reviewed and selected from 279 submissions. The other six volumes present the workshop proceedings, containing 285 papers out of 815 submissions. These six volumes includes the proceedings of the following workshops: ​ Advances in Artificial Intelligence Learning Technologies: Blended Learning, STEM, Computational Thinking and Coding (AAILT 2022); Workshop on Advancements in Applied Machine-learning and Data Analytics (AAMDA 2022); Advances in information Systems and Technologies for Emergency management, risk assessment and mitigation based on the Resilience (ASTER 2022); Advances in Web Based Learning (AWBL 2022); Blockchain and Distributed Ledgers: Technologies and Applications (BDLTA 2022); Bio and Neuro inspired Computing and Applications (BIONCA 2022); Configurational Analysis For Cities (CA Cities 2022); Computational and Applied Mathematics (CAM 2022), Computational and Applied Statistics (CAS 2022); Computational Mathematics, Statistics and Information Management (CMSIM); Computational Optimization and Applications (COA 2022); Computational Astrochemistry (CompAstro 2022); Computational methods for porous geomaterials (CompPor 2022); Computational Approaches for Smart, Conscious Cities (CASCC 2022); Cities, Technologies and Planning (CTP 2022); Digital Sustainability and Circular Economy (DiSCE 2022); Econometrics and Multidimensional Evaluation in Urban Environment (EMEUE 2022); Ethical AI applications for a human-centered cyber society (EthicAI 2022); Future Computing System Technologies and Applications (FiSTA 2022); Geographical Computing and Remote Sensing for Archaeology (GCRSArcheo 2022); Geodesign in Decision Making: meta planning and collaborative design for sustainable and inclusive development (GDM 2022); Geomatics in Agriculture and Forestry: new advances and perspectives (GeoForAgr 2022); Geographical Analysis, Urban Modeling, Spatial Statistics (Geog-An-Mod 2022); Geomatics for Resource Monitoring and Management (GRMM 2022); International Workshop on Information and Knowledge in the Internet of Things (IKIT 2022); 13th International Symposium on Software Quality (ISSQ 2022); Land Use monitoring for Sustanability (LUMS 2022); Machine Learning for Space and Earth Observation Data (MALSEOD 2022); Building multi-dimensional models for assessing complex environmental systems (MES 2022); MOdels and indicators for assessing and measuring the urban settlement deVElopment in the view of ZERO net land take by 2050 (MOVEto0 2022); Modelling Post-Covid cities (MPCC 2022); Ecosystem Services: nature’s contribution to people in practice. Assessment frameworks, models, mapping, and implications (NC2P 2022); New Mobility Choices For Sustainable and Alternative Scenarios (NEMOB 2022); 2nd Workshop on Privacy in the Cloud/Edge/IoT World (PCEIoT 2022); Psycho-Social Analysis of Sustainable Mobility in The Pre- and Post-Pandemic Phase (PSYCHE 2022); Processes, methods and tools towards RESilient cities and cultural heritage prone to SOD and ROD disasters (RES 2022); Scientific Computing Infrastructure (SCI 2022); Socio-Economic and Environmental Models for Land Use Management (SEMLUM 2022); 14th International Symposium on Software Engineering Processes and Applications (SEPA 2022); Ports of the future - smartness and sustainability (SmartPorts 2022); Smart Tourism (SmartTourism 2022); Sustainability Performance Assessment: models, approaches and applications toward interdisciplinary and integrated solutions (SPA 2022); Specifics of smart cities development in Europe (SPEED 2022); Smart and Sustainable Island Communities (SSIC 2022); Theoretical and Computational Chemistryand its Applications (TCCMA 2022); Transport Infrastructures for Smart Cities (TISC 2022); 14th International Workshop on Tools and Techniques in Software Development Process (TTSDP 2022); International Workshop on Urban Form Studies (UForm 2022); Urban Regeneration: Innovative Tools and Evaluation Model (URITEM 2022); International Workshop on Urban Space and Mobilities (USAM 2022); Virtual and Augmented Reality and Applications (VRA 2022); Advanced and Computational Methods for Earth Science Applications (WACM4ES 2022); Advanced Mathematics and Computing Methods in Complex Computational Systems (WAMCM 2022).




Learning Approaches in Signal Processing


Book Description

Coupled with machine learning, the use of signal processing techniques for big data analysis, Internet of things, smart cities, security, and bio-informatics applications has witnessed explosive growth. This has been made possible via fast algorithms on data, speech, image, and video processing with advanced GPU technology. This book presents an up-to-date tutorial and overview on learning technologies such as random forests, sparsity, and low-rank matrix estimation and cutting-edge visual/signal processing techniques, including face recognition, Kalman filtering, and multirate DSP. It discusses the applications that make use of deep learning, convolutional neural networks, random forests, etc. The applications include super-resolution imaging, fringe projection profilometry, human activities detection/capture, gesture recognition, spoken language processing, cooperative networks, bioinformatics, DNA, and healthcare.




Research Anthology on Rehabilitation Practices and Therapy


Book Description

The availability of practical applications, techniques, and case studies by international therapists is limited despite expansions to the fields of clinical psychology, rehabilitation, and counseling. As dialogues surrounding mental health grow, it is important to maintain therapeutic modalities that ensure the highest level of patient-centered rehabilitation and care are met across global networks. Research Anthology on Rehabilitation Practices and Therapy is a vital reference source that examines the latest scholarly material on trends and techniques in counseling and therapy and provides innovative insights into contemporary and future issues within the field. Highlighting a range of topics such as psychotherapy, anger management, and psychodynamics, this multi-volume book is ideally designed for mental health professionals, counselors, therapists, clinical psychologists, sociologists, social workers, researchers, students, and social science academicians seeking coverage on significant advances in rehabilitation and therapy.




Human Mechatronics Considerations of Sensing and Actuation Systems for Rehabilitation Application


Book Description

With the predicted increase in worldwide elderly population in the future and already significant populations of disabled people, assistive technologies and rehabilitation devices are demanded significantly. Utilizing a human mechatronic approach results in several advantages, including capability of measuring insightful information for patient's condition and providing proper assistive torque for abnormal movement correction. This dissertation investigates several domains, including (1) human dynamics model, (2) monitoring systems, and (3) design and control of active lower extremity exoskeleton. The dissertation begins with a study of a human dynamic model and sensing system for diagnosis and evaluation of patient's gait condition as first step of rehabilitation. A 7-DOF exoskeleton equipped with multiple position sensors and smart shoes is developed, so that this system can deliver patient's joint motion and estimated joint torque information. A human walking dynamic model is derived as it consists of multiple sub-dynamic models corresponding to each gait phase. In addition, a 3D human motion capture system is proposed as it utilizes an inertial measurement unit (IMU) sensor for 3D attitude estimation with embedded time varying complementary filter. This sensing system can deliver 3D orientations of upper extremities, and a forward kinematics animation. For the development of a rehabilitation device, an active lower extremity exoskeleton is proposed. A rotary series elastic actuator (RSEA) is utilized as a main actuator of the exoskeleton. The RSEA uses a torsion spring yielding elastic joint characteristics, which is safe for human robot interaction applications. A RSEA controller design is implemented, including a PID controller, a feedforward controller for friction compensation, and a disturbance observer for disturbance rejection. All sensing and actuation systems developed in this dissertation are verified by simulation studies and experiments.




Universal Access and Assistive Technology


Book Description

The first Cambridge Workshop on Universal Access and Assistive Technology (CWUAAT) was held at Trinity Hall, Cambridge, in March 2002. It was inspired by the earlier, highly successful Cambridge Workshops on Rehabilitation Robotics organised by the late Robin Jackson. Robin was the founder of Rehabilitation Research at Cambridge which now continues in the Engineering Design Centre within the Department of Engineering, led by John Clarkson and Simeon Keates, and in the Rainbow Group within the Computer Laboratory led by Peter Robinson. CWUAAT represents the first in a new series of workshops that we are aiming to hold every two years which, reflecting the spirit of recent moves to extend the rights for universal accessibility, will encourage discussion of a broad range of interests. There will be a general focus on product/solution development. Hence it is intended that the principal requirements for the successful design of assistive technology shall be addressed, where these range from the identification and capture of the needs of the users, through to the development and evaluation of truly usable and accessible systems for users with special needs. The best submissions received for the first CWUAAT are contained in this book, where the contributors are all leading researchers in the fields of Universal Access and Assistive Technology and represent a large part of the international research community. They include, though not exclusively, computer scientists, designers, engineers, industrial representatives, ergonomists and sociologists.




Temporal Segmentation of Human Motion for Rehabilitation


Book Description

Current physiotherapy practice relies on visual observation of patient movement for assessment and diagnosis. Automation of motion monitoring has the potential to improve accuracy and reliability, and provide additional diagnostic insight to the clinician, improving treatment quality, and patient progress. To enable automated monitoring, assessment, and diagnosis, the movements of the patient must be temporally segmented from the continuous measurements. Temporal segmentation is the process of identifying the starting and ending locations of movement primitives in a time-series data sequence. Most segmentation algorithms require training data, but a priori knowledge of the patient's movement patterns may not be available, necessitating the use of healthy population data for training. However, healthy population movement data may not generalize well to rehabilitation patients due to large differences in motion characteristics between the two demographics. In this thesis, four key contributions will be elaborated to enable accurate segmentation of patient movement data during rehabilitation. The first key contribution is the creation of a segmentation framework to categorize and compare different segmentation algorithms considering segment definitions, data sources, application specific requirements, algorithm mechanics, and validation techniques. This framework provides a structure for considering the factors that must be incorporated when constructing a segmentation and identification algorithm. The framework enables systematic comparison of different segmentation algorithms, provides the means to examine the impact of each algorithm component, and allows for a systematic approach to determine the best algorithm for a given situation. The second key contribution is the development of an online and accurate motion segmentation algorithm based on a classification framework. The proposed algorithm transforms the segmentation task into a classification problem by modelling the segment edge point directly. Given this formulation, a variety of feature transformation, dimensionality reduction and classifier techniques were investigated on several healthy and patient datasets. With proper normalization, the segmentation algorithm can be trained using healthy participant data and obtain high quality segments on patient data. Inter-participant and inter-primitive variability were assessed on a dataset of 30 healthy participants and 44 rehabilitation participants, demonstrating the generalizability and utility of the proposed approach for rehabilitation settings. The proposed approach achieves a segmentation accuracy of 83-100%. The third key contribution is the investigation of feature set generalizability of the proposed method. Nearly all segmentation techniques developed previously use a single sensor modality. The proposed method was applied to joint angles, electromyogram, motion capture, and force plate data to investigate how the choice of modality impacts segmentation performance. With proper normalization, the proposed method was shown to work with various input sensor types and achieved high accuracy on all sensor modalities examined. The proposed approach achieves a segmentation accuracy of 72-97%. The fourth key contribution is the development of a new feature set based on hypotheses about the optimality of human motion trajectory generation. A common hypothesis in human motor control is that human movement is generated by optimizing with respect to a certain criterion and is task dependent. In this thesis, a method to segment human movement by detecting changes to the optimization criterion being used via inverse trajectory optimization is proposed. The control strategy employed by the motor system is hypothesized to be a weighted sum of basis cost functions, with the basis weights changing with changes to the motion objective(s). Continuous time series data of movement is processed using a sliding fixed width window, estimating the basis weights of each cost function for each window by minimizing the Karush-Kuhn-Tucker optimality conditions. The quality of the cost function recovery is verified by evaluating the residual. The successfully estimated basis weights are averaged together to create a set of time varying basis weights that describe the changing control strategy of the motion and can be used to segment the movement with simple thresholds. The proposed algorithm is first demonstrated on simulation data and then demonstrated on a dataset of human subjects performing a series of exercise tasks. The proposed approach achieves a segmentation accuracy of 74-88%.




Introduction to Biomedical Engineering


Book Description

Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field. Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical engineering design, analysis, and modeling procedures. The numerous examples, drill problems and exercises are used to reinforce concepts and develop problem-solving skills making this book an invaluable tool for all biomedical students and engineers. New to this edition: Computational Biology, Medical Imaging, Genomics and Bioinformatics. * 60% update from first edition to reflect the developing field of biomedical engineering* New chapters on Computational Biology, Medical Imaging, Genomics, and Bioinformatics* Companion site: http://intro-bme-book.bme.uconn.edu/* MATLAB and SIMULINK software used throughout to model and simulate dynamic systems* Numerous self-study homework problems and thorough cross-referencing for easy use