Human-Robot Body Experience


Book Description

This monograph presents innovative research regarding the body experience of human individuals who are using assistive robotic devices such as wearable robots or teleoperation systems. The focus is set on human-in-the-loop experiments that help to empirically evaluate how users experience devices. Moreover, these experiments allow for further examination of the underlying mechanisms of body experience through extending existing psychological paradigms, e.g., by disentangling tactile feedback from contacts. Besides reporting and discussing psychological examinations, the influence of various aspects of engineering design is investigated, e.g., different implementations of haptic interfaces or robot control. As haptics are of paramount importance in this tight type of human-robot interaction, it is explored with respect to modality as well as temporal and spatial effects. The first part of the book motivates the research topic and gives an in-depth analysis of the experimental requirements. The second and third part present experimental designs and studies of human-robot body experience regarding the upper and lower limbs as well as cognitive models to predict them. The fourth part discusses a multitude of design considerations and provides directions to guide future research on bidirectional human-machine interfaces and non-functional haptic feedback.




Consciousness in Humanoid Robots


Book Description

Building a conscious robot is a scientific and technological challenge. Debates about the possibility of conscious robots and the related positive outcomes and hazards for human beings are today no longer confined to philosophical circles. Robot consciousness is a research field aimed at a two-part goal: on the one hand, scholars working in robot consciousness take inspiration from biological consciousness to build robots that present forms of experiential and functional consciousness. On the other hand, scholars employ robots as tools to better understand biological consciousness. Thus, part one of the goal concerns the replication of aspects of biological consciousness in robots, by unifying a variety of approaches from AI and robotics, cognitive robotics, epigenetic and affective robotics, situated and embodied robotics, developmental robotics, anticipatory systems, and biomimetic robotics. Part two of the goal is pursued by employing robots to advance and mark progress in the study of consciousness in humans and animals. Notably, neuroscientists involved in the study of consciousness do not exclude the possibility that robots may be conscious. This eBook comprises a collection of thirteen manuscripts and an Editorial published by Frontiers in Robotics and Artificial Intelligence, under the section Humanoid Robotics, and Frontiers in Neurorobotics, on the topic “Consciousness in Humanoid Robots.” This compendium aims at collating the most recent theoretical studies, models, and case studies of machine consciousness that take the humanoid robot as a frame of reference. The content in the articles may be applied to many different kinds of robots, and to software agents as well.




Cognitive Computing for Human-Robot Interaction


Book Description

Cognitive Computing for Human-Robot Interaction: Principles and Practices explores the efforts that should ultimately enable society to take advantage of the often-heralded potential of robots to provide economical and sustainable computing applications. This book discusses each of these applications, presents working implementations, and combines coherent and original deliberative architecture for human–robot interactions (HRI). Supported by experimental results, it shows how explicit knowledge management promises to be instrumental in building richer and more natural HRI, by pushing for pervasive, human-level semantics within the robot's deliberative system for sustainable computing applications. This book will be of special interest to academics, postgraduate students, and researchers working in the area of artificial intelligence and machine learning. Key features: - Introduces several new contributions to the representation and management of humans in autonomous robotic systems; - Explores the potential of cognitive computing, robots, and HRI to generate a deeper understanding and to provide a better contribution from robots to society; - Engages with the potential repercussions of cognitive computing and HRI in the real world. - Introduces several new contributions to the representation and management of humans in an autonomous robotic system - Explores cognitive computing, robots and HRI, presenting a more in-depth understanding to make robots better for society - Gives a challenging approach to those several repercussions of cognitive computing and HRI in the actual global scenario




Trust in Human-Robot Interaction


Book Description

Trust in Human-Robot Interaction addresses the gamut of factors that influence trust of robotic systems. The book presents the theory, fundamentals, techniques and diverse applications of the behavioral, cognitive and neural mechanisms of trust in human-robot interaction, covering topics like individual differences, transparency, communication, physical design, privacy and ethics. - Presents a repository of the open questions and challenges in trust in HRI - Includes contributions from many disciplines participating in HRI research, including psychology, neuroscience, sociology, engineering and computer science - Examines human information processing as a foundation for understanding HRI - Details the methods and techniques used to test and quantify trust in HRI




Bioinspired Legged Locomotion


Book Description

Bioinspired Legged Locomotion: Models, Concepts, Control and Applications explores the universe of legged robots, bringing in perspectives from engineering, biology, motion science, and medicine to provide a comprehensive overview of the field. With comprehensive coverage, each chapter brings outlines, and an abstract, introduction, new developments, and a summary. Beginning with bio-inspired locomotion concepts, the book's editors present a thorough review of current literature that is followed by a more detailed view of bouncing, swinging, and balancing, the three fundamental sub functions of locomotion. This part is closed with a presentation of conceptual models for locomotion. Next, the book explores bio-inspired body design, discussing the concepts of motion control, stability, efficiency, and robustness. The morphology of legged robots follows this discussion, including biped and quadruped designs. Finally, a section on high-level control and applications discusses neuromuscular models, closing the book with examples of applications and discussions of performance, efficiency, and robustness. At the end, the editors share their perspective on the future directions of each area, presenting state-of-the-art knowledge on the subject using a structured and consistent approach that will help researchers in both academia and industry formulate a better understanding of bioinspired legged robotic locomotion and quickly apply the concepts in research or products. - Presents state-of-the-art control approaches with biological relevance - Provides a thorough understanding of the principles of organization of biological locomotion - Teaches the organization of complex systems based on low-dimensional motion concepts/control - Acts as a guideline reference for future robots/assistive devices with legged architecture - Includes a selective bibliography on the most relevant published articles




Re-Enacting Sensorimotor Experience for Cognition


Book Description

Mastering the sensorimotor capabilities of our body is a skill that we acquire and refine over time, starting at the prenatal stages of development. This learning process is linked to brain development and is shaped by the rich set of multimodal information experienced while exploring and interacting with the environment. Evidence coming from neuroscience suggests the brain forms and mantains body representations as the main strategy to this mastering. Although it is still not clear how this knowledge is represented in our brain, it is reasonable to think that such internal models of the body undergo a continuous process of adaptation. They need to match growing corporal dimensions during development, as well as temporary changes in the characteristics of the body, such as the transient morphological alterations produced by the usage of tools. In the robotics community there is an increasing interest in reproducing similar mechanisms in artificial agents, mainly motivated by the aim of producing autonomous adaptive systems that can deal with complexity and uncertainty in human environments. Although promising results have been achieved in the context of sensorimotor learning and autonomous generation of body representations, it is still not clear how such low-level representations can be scaled up to more complex motor skills and how they can enable the development of cognitive capabilities. Recent findings from behavioural and brain studies suggests that processes of mental simulations of action-perception loops are likely to be executed in our brain and are dependent on internal motor representations. The capability to simulate sensorimotor experience might represent a key mechanism behind the implementation of further cognitive skills, such as self-detection, self-other distinction and imitation. Empirical investigation on the functioning of similar processes in the brain and on their implementation in artificial agents is fragmented. This e-book comprises a collection of manuscripts published by Frontiers in Robotics and Artificial Intelligence, under the section Humanoid Robotics, on the research topic re-enactment of sensorimotor experience for cognition in artificial agents. This compendium aims at condensing the latest theoretical, review and experimental studies that address new paradigms for learning and integrating multimodal sensorimotor information in artificial agents, re-use of the sensorimotor experience for cognitive development and further construction of more complex strategies and behaviours using these concepts. The authors would like to thank M.A. Dylan Andrade for his art work for the cover.




New Frontiers in Human-robot Interaction


Book Description

Human–Robot Interaction (HRI) considers how people can interact with robots in order to enable robots to best interact with people. HRI presents many challenges with solutions requiring a unique combination of skills from many fields, including computer science, artificial intelligence, social sciences, ethology and engineering. We have specifically aimed this work to appeal to such a multi-disciplinary audience. This volume presents new and exciting material from HRI researchers who discuss research at the frontiers of HRI. The chapters address the human aspects of interaction, such as how a robot may understand, provide feedback and act as a social being in interaction with a human, to experimental studies and field implementations of human–robot collaboration ranging from joint action, robots practically and safely helping people in real world situations, robots helping people via rehabilitation and robots acquiring concepts from communication. This volume reflects current trends in this exciting research field.




Robo Sapiens Japanicus


Book Description

Japan is arguably the first postindustrial society to embrace the prospect of human-robot coexistence. Over the past decade, Japanese humanoid robots designed for use in homes, hospitals, offices, and schools have become celebrated in mass and social media throughout the world. In Robo sapiens japanicus, Jennifer Robertson casts a critical eye on press releases and public relations videos that misrepresent robots as being as versatile and agile as their science fiction counterparts. An ethnography and sociocultural history of governmental and academic discourse of human-robot relations in Japan, this book explores how actual robots—humanoids, androids, and animaloids—are “imagineered” in ways that reinforce the conventional sex/gender system and political-economic status quo. In addition, Robertson interrogates the notion of human exceptionalism as she considers whether “civil rights” should be granted to robots. Similarly, she juxtaposes how robots and robotic exoskeletons reinforce a conception of the “normal” body with a deconstruction of the much-invoked Theory of the Uncanny Valley.




Sad Robot Stories


Book Description

Robot is one of millions of androids on an Earth that recently saw the extinction of human life. While Robot's mechanical brothers and sisters seem happy, Robot finds himself lost and missing the only friend he had, a human named Mike whose family accepted Robot as a piece of their personal puzzle. Without both the mistakes and the capacity for miracles that define human civilization, is civilization even worth having? Explore this question in the hilarious yet heartbreaking full-length debut of popular Chicago performer Mason Johnson. A Kurt Vonnegut for the 21st century, his answers are simultaneously droll, surprising and touching, and will make you rethink the limits of what a storyteller can accomplish within science fiction.




Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction


Book Description

As modern technologies continue to develop and evolve, the ability of users to adapt with new systems becomes a paramount concern. Research into new ways for humans to make use of advanced computers and other such technologies through artificial intelligence and computer simulation is necessary to fully realize the potential of tools in the 21st century. Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction provides emerging research in advanced trends in robotics, AI, simulation, and human-computer interaction. Readers will learn about the positive applications of artificial intelligence and human-computer interaction in various disciples such as business and medicine. This book is a valuable resource for IT professionals, researchers, computer scientists, and researchers invested in assistive technologies, artificial intelligence, robotics, and computer simulation.