Humanoid Robotics: A Reference


Book Description

Humanoid Robotics provides a comprehensive compilation of developments in the conceptualization, design and development of humanoid robots and related technologies. Human beings have built the environment they occupy (living spaces, instruments and vehicles) to suit two-legged systems. Building systems, especially in robotics, that are compatible with the well-established, human-based surroundings and which could naturally interact with humans is an ultimate goal for all researches and engineers. Humanoid Robots are systems (i.e. robots) which mimic human behavior. Humanoids provide a platform to study the construction of systems that behave and interact like humans. A broad range of applications ranging from daily housework to complex medical surgery, deep ocean exploration, and other potentially dangerous tasks are possible using humanoids. In addition, the study of humanoid robotics provides a platform to understand the mechanisms and offers a physical visual of how humans interact, think, and react with the surroundings and how such behaviors could be reassembled and reconstructed. Currently, the most challenging issue with bipedal humanoids is to make them balance on two legs, The purportedly simple act of finding the best balance that enables easy walking, jumping and running requires some of the most sophisticated development of robotic systems- those that will ultimately mimic fully the diversity and dexterity of human beings. Other typical human-like interactions such as complex thought and conversations on the other hand, also pose barriers for the development of humanoids because we are yet to understand fully the way in which we humans interact with our environment and consequently to replicate this in humanoids.




Introduction to Humanoid Robotics


Book Description

This book is for researchers, engineers, and students who are willing to understand how humanoid robots move and be controlled. The book starts with an overview of the humanoid robotics research history and state of the art. Then it explains the required mathematics and physics such as kinematics of multi-body system, Zero-Moment Point (ZMP) and its relationship with body motion. Biped walking control is discussed in depth, since it is one of the main interests of humanoid robotics. Various topics of the whole body motion generation are also discussed. Finally multi-body dynamics is presented to simulate the complete dynamic behavior of a humanoid robot. Throughout the book, Matlab codes are shown to test the algorithms and to help the reader ́s understanding.




Human-Robot Interaction


Book Description

This broad overview for graduate students introduces multidisciplinary topics from robotics to sociology which are needed to understand the area.




Humanoid Robotics and Neuroscience


Book Description

Humanoid robots are highly sophisticated machines equipped with human-like sensory and motor capabilities. Today we are on the verge of a new era of rapid transformations in both science and engineering-one that brings together technological advancements in a way that will accelerate both neuroscience and robotics. Humanoid Robotics and Neuroscienc




Humanoid Robots


Book Description

Humanoid Robots: Modeling and Control provides systematic presentation of the models used in the analysis, design and control of humanoid robots. The book starts with a historical overview of the field, a summary of the current state of the art achievements and an outline of the related fields of research. It moves on to explain the theoretical foundations in terms of kinematic, kineto-static and dynamic relations. Further on, a detailed overview of biped balance control approaches is presented. Models and control algorithms for cooperative object manipulation with a multi-finger hand, a dual-arm and a multi-robot system are also discussed. One of the chapters is devoted to selected topics from the area of motion generation and control and their applications. The final chapter focuses on simulation environments, specifically on the step-by-step design of a simulator using the Matlab® environment and tools. This book will benefit readers with an advanced level of understanding of robotics, mechanics and control such as graduate students, academic and industrial researchers and professional engineers. Researchers in the related fields of multi-legged robots, biomechanics, physical therapy and physics-based computer animation of articulated figures can also benefit from the models and computational algorithms presented in the book. Provides a firm theoretical basis for modelling and control algorithm design Gives a systematic presentation of models and control algorithms Contains numerous implementation examples demonstrated with 43 video clips




Consciousness in Humanoid Robots


Book Description

Building a conscious robot is a scientific and technological challenge. Debates about the possibility of conscious robots and the related positive outcomes and hazards for human beings are today no longer confined to philosophical circles. Robot consciousness is a research field aimed at a two-part goal: on the one hand, scholars working in robot consciousness take inspiration from biological consciousness to build robots that present forms of experiential and functional consciousness. On the other hand, scholars employ robots as tools to better understand biological consciousness. Thus, part one of the goal concerns the replication of aspects of biological consciousness in robots, by unifying a variety of approaches from AI and robotics, cognitive robotics, epigenetic and affective robotics, situated and embodied robotics, developmental robotics, anticipatory systems, and biomimetic robotics. Part two of the goal is pursued by employing robots to advance and mark progress in the study of consciousness in humans and animals. Notably, neuroscientists involved in the study of consciousness do not exclude the possibility that robots may be conscious. This eBook comprises a collection of thirteen manuscripts and an Editorial published by Frontiers in Robotics and Artificial Intelligence, under the section Humanoid Robotics, and Frontiers in Neurorobotics, on the topic “Consciousness in Humanoid Robots.” This compendium aims at collating the most recent theoretical studies, models, and case studies of machine consciousness that take the humanoid robot as a frame of reference. The content in the articles may be applied to many different kinds of robots, and to software agents as well.




Toward Humanoid Robots: The Role of Fuzzy Sets


Book Description

This book offers a comprehensive reference guide for modeling humanoid robots using intelligent and fuzzy systems. It provides readers with the necessary intelligent and fuzzy tools for controlling humanoid robots by incomplete, vague, and imprecise information or insufficient data, where classical modeling approaches cannot be applied. The respective chapters, written by prominent researchers, explain a wealth of both basic and advanced concepts including fuzzy control, metaheuristic-based control, neutrosophic control, etc. To foster reader comprehension, all chapters include relevant numerical examples or case studies. Taken together, they form an excellent reference guide for researchers, lecturers, and postgraduate students pursuing research on humanoid robots. Moreover, by extending all the main aspects of humanoid robots to its intelligent and fuzzy counterparts, the book presents a dynamic snapshot of the field that is expected to stimulate new directions, ideas, and developments.




Robo Sapiens Japanicus


Book Description

Japan is arguably the first postindustrial society to embrace the prospect of human-robot coexistence. Over the past decade, Japanese humanoid robots designed for use in homes, hospitals, offices, and schools have become celebrated in mass and social media throughout the world. In Robo sapiens japanicus, Jennifer Robertson casts a critical eye on press releases and public relations videos that misrepresent robots as being as versatile and agile as their science fiction counterparts. An ethnography and sociocultural history of governmental and academic discourse of human-robot relations in Japan, this book explores how actual robots—humanoids, androids, and animaloids—are “imagineered” in ways that reinforce the conventional sex/gender system and political-economic status quo. In addition, Robertson interrogates the notion of human exceptionalism as she considers whether “civil rights” should be granted to robots. Similarly, she juxtaposes how robots and robotic exoskeletons reinforce a conception of the “normal” body with a deconstruction of the much-invoked Theory of the Uncanny Valley.




The Future of Humanoid Robots


Book Description

This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R




Human Robotics


Book Description

A synthesis of biomechanics and neural control that draws on recent advances in robotics to address control problems solved by the human sensorimotor system. This book proposes a transdisciplinary approach to investigating human motor control that synthesizes musculoskeletal biomechanics and neural control. The authors argue that this integrated approach—which uses the framework of robotics to understand sensorimotor control problems—offers a more complete and accurate description than either a purely neural computational approach or a purely biomechanical one. The authors offer an account of motor control in which explanatory models are based on experimental evidence using mathematical approaches reminiscent of physics. These computational models yield algorithms for motor control that may be used as tools to investigate or treat diseases of the sensorimotor system and to guide the development of algorithms and hardware that can be incorporated into products designed to assist with the tasks of daily living. The authors focus on the insights their approach offers in understanding how movement of the arm is controlled and how the control adapts to changing environments. The book begins with muscle mechanics and control, progresses in a logical manner to planning and behavior, and describes applications in neurorehabilitation and robotics. The material is self-contained, and accessible to researchers and professionals in a range of fields, including psychology, kinesiology, neurology, computer science, and robotics.