100 Years Of Planck's Quantum


Book Description

This invaluable book takes the reader from Planck's discovery of the quantum in 1900 to the most recent interpretations and applications of nonrelativistic quantum mechanics.The introduction of the quantum idea leads off the prehistory of quantum mechanics, featuring Planck, Einstein, Bohr, Compton, and de Broglie's immortal contributions. Their original discovery papers are featured with explanatory notes and developments in Part 1.The invention of matrix mechanics and quantum mechanics by Heisenberg, Born, Jordan, Dirac, and Schrödinger is presented next, in Part 2.Following that, in Part 3, are the Einstein-Bohr debates on the interpretation of quantum mechanics culminating in Bell's inequality and Aspect's experiment demonstrating the actuality of the long range quantum correlations to which Einstein, Podolsky, and Rosen took great exception. Resolutions of quantum paradoxes and the current state of such debates are summarized.Part 4 presents a selection of the most dramatic modern developments, both theoretical and experimental. These include Feynman path integrals, the modern interpretation based on decoherence, quantum optics experiments leading to teleportation, DeWitt's wave function of the universe, and a brief introduction to the end-of-the-millennium prospects of quantum computation. A concluding chapter presents the authors' conjectures for the next 100 years of the quantum.This book is ideally suited to anyone with a junior level background in modern physics and quantum mechanics, and a cultural interest in the original sources of the greatest ideas of the greatest founders of this subject as derived from their first discovery papers. These papers have led, in giant strides across the whole of the twentieth century, to the revolutionary experimental advances of the last decade. The book makes accessible — physically and intellectually — both the deepest roots and the highest branches of nonrelativistic quantum physics.




On the Quantum Theory of Line-spectra


Book Description

This classic work by the Nobel Laureate elaborates on the correspondence principle, discussing the theory's applications from a uniform point of view and considering the underlying assumptions in their relations to ordinary mechanics and electrodynamics. Bohr closely traces the analogy between quantum theory and ordinary theory of radiation. 1918-1922 editions.




Quantum Generations


Book Description

At the end of the nineteenth century, some physicists believed that the basic principles underlying their subject were already known, and that physics in the future would only consist of filling in the details. They could hardly have been more wrong. The past century has seen the rise of quantum mechanics, relativity, cosmology, particle physics, and solid-state physics, among other fields. These subjects have fundamentally changed our understanding of space, time, and matter. They have also transformed daily life, inspiring a technological revolution that has included the development of radio, television, lasers, nuclear power, and computers. In Quantum Generations, Helge Kragh, one of the world's leading historians of physics, presents a sweeping account of these extraordinary achievements of the past one hundred years. The first comprehensive one-volume history of twentieth-century physics, the book takes us from the discovery of X rays in the mid-1890s to superstring theory in the 1990s. Unlike most previous histories of physics, written either from a scientific perspective or from a social and institutional perspective, Quantum Generations combines both approaches. Kragh writes about pure science with the expertise of a trained physicist, while keeping the content accessible to nonspecialists and paying careful attention to practical uses of science, ranging from compact disks to bombs. As a historian, Kragh skillfully outlines the social and economic contexts that have shaped the field in the twentieth century. He writes, for example, about the impact of the two world wars, the fate of physics under Hitler, Mussolini, and Stalin, the role of military research, the emerging leadership of the United States, and the backlash against science that began in the 1960s. He also shows how the revolutionary discoveries of scientists ranging from Einstein, Planck, and Bohr to Stephen Hawking have been built on the great traditions of earlier centuries. Combining a mastery of detail with a sure sense of the broad contours of historical change, Kragh has written a fitting tribute to the scientists who have played such a decisive role in the making of the modern world.




The Quantum Story


Book Description

The twentieth century was defined by physics. From the minds of the world's leading physicists there flowed a river of ideas that would transport mankind to the pinnacle of wonderment and to the very depths of human despair. This was a century that began with the certainties of absolute knowledge and ended with the knowledge of absolute uncertainty. It was a century in which physicists developed weapons with the capacity to destroy our reality, whilst at the same time denying us the possibility that we can ever properly comprehend it. Almost everything we think we know about the nature of our world comes from one theory of physics. This theory was discovered and refined in the first thirty years of the twentieth century and went on to become quite simply the most successful theory of physics ever devised. Its concepts underpin much of the twenty-first century technology that we have learned to take for granted. But its success has come at a price, for it has at the same time completely undermined our ability to make sense of the world at the level of its most fundamental constituents. Rejecting the fundamental elements of uncertainty and chance implied by quantum theory, Albert Einstein once famously declared that 'God does not play dice'. Niels Bohr claimed that anybody who is not shocked by the theory has not understood it. The charismatic American physicist Richard Feynman went further: he claimed that nobody understands it. This is quantum theory, and this book tells its story. Jim Baggott presents a celebration of this wonderful yet wholly disconcerting theory, with a history told in forty episodes — significant moments of truth or turning points in the theory's development. From its birth in the porcelain furnaces used to study black body radiation in 1900, to the promise of stimulating new quantum phenomena to be revealed by CERN's Large Hadron Collider over a hundred years later, this is the extraordinary story of the quantum world. Oxford Landmark Science books are 'must-read' classics of modern science writing which have crystallized big ideas, and shaped the way we think.







Thirty Years that Shook Physics


Book Description

Lucid, accessible introduction to the influential theory of energy and matter features careful explanations of Dirac's anti-particles, Bohr's model of the atom, and much more. Numerous drawings. 1966 edition.




Minkowski Spacetime: A Hundred Years Later


Book Description

Celebrating the one hundredth anniversary of the 1909 publication of Minkowski’s seminal paper "Space and Time", this volume includes a fresh translation as well as the original in German, and a number of contributed papers on the still-controversial subject.




100 Years of Fundamental Theoretical Physics in the Palm of Your Hand


Book Description

This book aims to integrate, in a pedagogical and technical manner, with detailed derivations, all essential principles of fundamental theoretical physics as developed over the past 100 years. It covers: Quantum physics and Stability Problems in the Quantum World, Minkowski Spacetime Physics Particle Classifications and Underlying Symmetries, Symmetry Violations, Quantum Field Theory of Particle Interactions, Higgs Field Physics, Supersymmetry: A Theory with Mathematical Beauty Superstrings, Gravity and Supergravity, General Relativity Predictions, including Frame Dragging, Intricacies of Black Hole Physics, Perturbative and Non-perturbative Quantum Gravity Intricacies of Modern Cosmology, including Inflation and Power Spectrum If you are in the process of learning, or are lecturing on, any of the subjects above, then this is your book - irrespective of your specialty. With over-specialization and no time to master all the fields given above, students, and perhaps many physicists, may find it difficult to keep up with all the exciting developments going on, and are even less familiar with their underlying technicalities: e.g. they might have heard that the Universe is 13.8 billion years old, but have no idea on how this number is actually computed. This unique book will be of great value to graduate students, instructors and researchers interested in the intricacies and derivations of the many aspects of modern fundamental theoretical physics. And, although a graduate level book, some chapters may also be suitable for advanced undergraduates in their final year.




100 Years Werner Heisenberg


Book Description

Over 40 renowned scientists from all around the world discuss the work and influence of Werner Heisenberg. The papers result from the symposium held by the Alexander von Humboldt-Stiftung on the occasion of the 100th anniversary of Heisenberg's birth, one of the most important physicists of the 20th century and cofounder of modern-day quantum mechanics. Taking atomic and laser physics as their starting point, the scientists illustrate the impact of Heisenberg's theories on astroparticle physics, high-energy physics and string theory right up to processing quantum information.




Galileo Unbound


Book Description

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.