Hybrid Frequentist/Bayesian Power and Bayesian Power in Planning Clinical Trials


Book Description

Hybrid Frequentist/Bayesian Power and Bayesian Power in Planning Clinical Trials provides a practical introduction to unconditional approaches to planning randomised clinical trials, particularly aimed at drug development in the pharmaceutical industry. This book is aimed at providing guidance to practitioners in using average power, assurance and related concepts. This book brings together recent research and sets them in a consistent framework and provides a fresh insight into how such methods can be used. Features: A focus on normal theory linking average power, expected power, predictive power, assurance, conditional Bayesian power and Bayesian power. Extensions of the concepts to binomial, and time-to-event outcomes and non-inferiority trials An investigation into the upper bound on average power, assurance and Bayesian power based on the prior probability of a positive treatment effect Application of assurance to a series of trials in a development program and an introduction of the assurance of an individual trial conditional on the positive outcome of an earlier trial in the program, or to the successful outcome of an interim analysis Prior distribution of power and sample size Extension of the basic approach to proof-of-concept trials with dual success criteria Investigation of the connection between conditional and predictive power at an interim analysis and power and assurance Introduction of the idea of surety in sample sizing of clinical trials based on the width of the confidence intervals for the treatment effect, and an unconditional version.




Case Studies in Bayesian Methods for Biopharmaceutical CMC


Book Description

The subject of this book is applied Bayesian methods for chemistry, manufacturing, and control (CMC) studies in the biopharmaceutical industry. The book has multiple authors from industry and academia, each contributing a case study (chapter). The collection of case studies covers a broad array of CMC topics, including stability analysis, analytical method development, specification setting, process development and optimization, process control, experimental design, dissolution testing, and comparability studies. The analysis of each case study includes a presentation of code and reproducible output. This book is written with an academic level aimed at practicing nonclinical biostatisticians, most of whom have graduate degrees in statistics. • First book of its kind focusing strictly on CMC Bayesian case studies • Case studies with code and output • Representation from several companies across the industry as well as academia • Authors are leading and well-known Bayesian statisticians in the CMC field • Accompanying website with code for reproducibility • Reflective of real-life industry applications/problems




Case Studies in Innovative Clinical Trials


Book Description

Drug development is a strictly regulated area. As such, marketing approval of a new drug depends heavily, if not exclusively, on evidence generated from clinical trials. Drug development has seen tremendous innovation in science and technology that has revolutionized the treatment of some diseases. And yet, the statistical design and practical conduct of the clinical trials used to test new therapeutics for safety and efficacy have changed very little over the decades. Our approach to clinical trials is steeped in convention and tradition. The large, fixed, randomized controlled trial methods that have been the gold standard are well understood and expected by many trial stakeholders. However, this approach is not well suited to all aspects of modern drug development and the current competitive landscape. We now see new therapies that target a small fraction of the patient population, rare diseases with high unmet medical needs, and pediatric populations that must wait for years for new drug approvals from the time that therapies are approved in adults. Large randomized clinical trials are at best inefficient and at worst completely infeasible in many modern clinical settings. Advances in technology and data infrastructure call for innovations in clinical trial design. Despite advances in statistical methods, the availability of information, and computing power, the actual experience with innovative design in clinical trials across industry and academia is limited. This book will be an important showcase of the potential for these innovative designs in modern drug development and will be an important resource to guide those who wish to undertake them for themselves. This book is ideal for professionals in the pharmaceutical industry and regulatory agencies, but it will also be useful to academic researchers, faculty members, and graduate students in statistics, biostatistics, public health, and epidemiology due to its focus on innovation. Key Features: Is written by pharmaceutical industry experts, academic researchers, and regulatory reviewers; this is the first book providing a comprehensive set of case studies related to statistical methodology, implementation, regulatory considerations, and communication of complex innovative trial design Has a broad appeal to a multitude of readers across academia, industry, and regulatory agencies Each contribution is a practical case study that can speak to the benefits of an innovative approach but also balance that with the real-life challenges encountered A complete understanding of what is actually being done in modern clinical trials will broaden the reader’s capabilities and provide examples to first mimic and then customize and expand upon when exploring these ideas on their own




Model-Assisted Bayesian Designs for Dose Finding and Optimization


Book Description

Bayesian adaptive designs provide a critical approach to improve the efficiency and success of drug development that has been embraced by the US Food and Drug Administration (FDA). This is particularly important for early phase trials as they form the basis for the development and success of subsequent phase II and III trials. The objective of this book is to describe the state-of-the-art model-assisted designs to facilitate and accelerate the use of novel adaptive designs for early phase clinical trials. Model-assisted designs possess avant-garde features where superiority meets simplicity. Model-assisted designs enjoy exceptional performance comparable to more complicated model-based adaptive designs, yet their decision rules often can be pre-tabulated and included in the protocol—making implementation as simple as conventional algorithm-based designs. An example is the Bayesian optimal interval (BOIN) design, the first dose-finding design to receive the fit-for-purpose designation from the FDA. This designation underscores the regulatory agency's support of the use of the novel adaptive design to improve drug development. Features Represents the first book to provide comprehensive coverage of model-assisted designs for various types of dose-finding and optimization clinical trials Describes the up-to-date theory and practice for model-assisted designs Presents many practical challenges, issues, and solutions arising from early-phase clinical trials Illustrates with many real trial applications Offers numerous tips and guidance on designing dose finding and optimization trials Provides step-by-step illustrations of using software to design trials Develops a companion website (www.trialdesign.org) to provide freely available, easy-to-use software to assist learning and implementing model-assisted designs Written by internationally recognized research leaders who pioneered model-assisted designs from the University of Texas MD Anderson Cancer Center, this book shows how model-assisted designs can greatly improve the efficiency and simplify the design, conduct, and optimization of early-phase dose-finding trials. It should therefore be a very useful practical reference for biostatisticians, clinicians working in clinical trials, and drug regulatory professionals, as well as graduate students of biostatistics. Novel model-assisted designs showcase the new KISS principle: Keep it simple and smart!




Medical Statistics for Cancer Studies


Book Description

Cancer is a dreaded disease. One in two people will be diagnosed with cancer within their lifetime. Medical Statistics for Cancer Studies shows how cancer data can be analysed in a variety of ways, covering cancer clinical trial data, epidemiological data, biological data, and genetic data. It gives some background in cancer biology and genetics, followed by detailed overviews of survival analysis, clinical trials, regression analysis, epidemiology, meta-analysis, biomarkers, and cancer informatics. It includes lots of examples using real data from the author’s many years of experience working in a cancer clinical trials unit. Features: A broad and accessible overview of statistical methods in cancer research Necessary background in cancer biology and genetics Details of statistical methodology with minimal algebra Many examples using real data from cancer clinical trials Appendix giving statistics revision.




Digital Therapeutics


Book Description

One of the hallmarks of the 21st century medicine is the emergence of digital therapeutics (DTx)—evidence-based, clinically validated digital technologies to prevent, diagnose, treat, and manage various diseases and medical conditions. DTx solutions have been gaining interest from patients, investors, healthcare providers, health authorities, and other stakeholders because of the potential of DTx to deliver equitable, massively scalable, personalized and transformative treatments for different unmet medical needs. Digital Therapeutics: Scientific, Statistical, Clinical, and Regulatory Aspects is an unparalleled summary of the current scientific, statistical, developmental, and regulatory aspects of DTx which is poised to become the fastest growing area of the biopharmaceutical and digital medicine product development. This edited volume intends to provide a systematic exposition to digital therapeutics through 19 peer-reviewed chapters written by subject matter experts in this emerging field. This edited volume is an invaluable resource for business leaders and researchers working in public health, healthcare, digital health, information technology, and biopharmaceutical industries. It will be also useful for regulatory scientists involved in the review of DTx products, and for faculty and students involved in an interdisciplinary research on digital health and digital medicine. Key Features: Provides the taxonomy of the concepts and a navigation tool for the field of DTx. Covers important strategic aspects of the DTx industry, thereby helping investors, developers, and regulators gain a better appreciation of the potential value of DTx. Expounds on many existing and emerging state-of-the art scientific and technological tools, as well as data privacy, ethical and regulatory considerations for DTx product development. Presents several case studies of successful development of some of the most remarkable DTx products. Provides some perspectives and forward-looking statements on the future of digital medicine.




Bayesian Adaptive Methods for Clinical Trials


Book Description

Already popular in the analysis of medical device trials, adaptive Bayesian designs are increasingly being used in drug development for a wide variety of diseases and conditions, from Alzheimer's disease and multiple sclerosis to obesity, diabetes, hepatitis C, and HIV. Written by leading pioneers of Bayesian clinical trial designs, Bayesian Adapti




Design and Analysis of Pragmatic Trials


Book Description

This book begins with an introduction of pragmatic cluster randomized trials (PCTs) and reviews various pragmatic issues that need to be addressed by statisticians at the design stage. It discusses the advantages and disadvantages of each type of PCT, and provides sample size formulas, sensitivity analyses, and examples for sample size calculation. The generalized estimating equation (GEE) method will be employed to derive sample size formulas for various types of outcomes from the exponential family, including continuous, binary, and count variables. Experimental designs that have been frequently employed in PCTs will be discussed, including cluster randomized designs, matched-pair cluster randomized design, stratified cluster randomized design, stepped-wedge cluster randomized design, longitudinal cluster randomized design, and crossover cluster randomized design. It demonstrates that the GEE approach is flexible to accommodate pragmatic issues such as hierarchical correlation structures, different missing data patterns, randomly varying cluster sizes, etc. It has been reported that the GEE approach leads to under-estimated variance with limited numbers of clusters. The remedy for this limitation is investigated for the design of PCTs. This book can assist practitioners in the design of PCTs by providing a description of the advantages and disadvantages of various PCTs and sample size formulas that address various pragmatic issues, facilitating the proper implementation of PCTs to improve health care. It can also serve as a textbook for biostatistics students at the graduate level to enhance their knowledge or skill in clinical trial design. Key Features: Discuss the advantages and disadvantages of each type of PCTs, and provide sample size formulas, sensitivity analyses, and examples. Address an unmet need for guidance books on sample size calculations for PCTs; A wide variety of experimental designs adopted by PCTs are covered; The sample size solutions can be readily implemented due to the accommodation of common pragmatic issues encountered in real-world practice; Useful to both academic and industrial biostatisticians involved in clinical trial design; Can be used as a textbook for graduate students majoring in statistics and biostatistics.




Statistical Analytics for Health Data Science with SAS and R


Book Description

This book aims to compile typical fundamental-to-advanced statistical methods to be used for health data sciences. Although the book promotes applications to health and health-related data, the models in the book can be used to analyze any kind of data. The data are analyzed with the commonly used statistical software of R/SAS (with online supplementary on SPSS/Stata). The data and computing programs will be available to facilitate readers’ learning experience. There has been considerable attention to making statistical methods and analytics available to health data science researchers and students. This book brings it all together to provide a concise point-of-reference for the most commonly used statistical methods from the fundamental level to the advanced level. We envisage this book will contribute to the rapid development in health data science. We provide straightforward explanations of the collected statistical theory and models, compilations of a variety of publicly available data, and illustrations of data analytics using commonly used statistical software of SAS/R. We will have the data and computer programs available for readers to replicate and implement the new methods. The primary readers would be applied data scientists and practitioners in any field of data science, applied statistical analysts and scientists in public health, academic researchers, and graduate students in statistics and biostatistics. The secondary readers would be R&D professionals/practitioners in industry and governmental agencies. This book can be used for both teaching and applied research.




Data Science, AI, and Machine Learning in Drug Development


Book Description

The confluence of big data, artificial intelligence (AI), and machine learning (ML) has led to a paradigm shift in how innovative medicines are developed and healthcare delivered. To fully capitalize on these technological advances, it is essential to systematically harness data from diverse sources and leverage digital technologies and advanced analytics to enable data-driven decisions. Data science stands at a unique moment of opportunity to lead such a transformative change. Intended to be a single source of information, Data Science, AI, and Machine Learning in Drug Research and Development covers a wide range of topics on the changing landscape of drug R & D, emerging applications of big data, AI and ML in drug development, and the build of robust data science organizations to drive biopharmaceutical digital transformations. Features Provides a comprehensive review of challenges and opportunities as related to the applications of big data, AI, and ML in the entire spectrum of drug R & D Discusses regulatory developments in leveraging big data and advanced analytics in drug review and approval Offers a balanced approach to data science organization build Presents real-world examples of AI-powered solutions to a host of issues in the lifecycle of drug development Affords sufficient context for each problem and provides a detailed description of solutions suitable for practitioners with limited data science expertise