Hydraulic Fracturing and Rock Mechanics


Book Description

This open access book is the first to consider the effect of non-uniform fluid pressure in hydraulic fractures. The book covers the key topics in the process of hydraulic fracture nucleation, growth, interaction and fracture network formation. Laboratory experiments and theoretical modeling are combined to elucidate the formation mechanism of complex fracture networks. This book is suitable for master’s/Ph.D. students, scientists and engineers majoring in rock mechanics and petroleum engineering who need to use a more reliable model to predict fracture behavior.




Porous Rock Fracture Mechanics


Book Description

Porous Rock Failure Mechanics: Hydraulic Fracturing, Drilling and Structural Engineering focuses on the fracture mechanics of porous rocks and modern simulation techniques for progressive quasi-static and dynamic fractures. The topics covered in this volume include a wide range of academic and industrial applications, including petroleum, mining, and civil engineering. Chapters focus on advanced topics in the field of rock's fracture mechanics and address theoretical concepts, experimental characterization, numerical simulation techniques, and their applications as appropriate. Each chapter reflects the current state-of-the-art in terms of the modern use of fracture simulation in industrial and academic sectors. Some of the major contributions in this volume include, but are not limited to: anisotropic elasto-plastic deformation mechanisms in fluid saturated porous rocks, dynamics of fluids transport in fractured rocks and simulation techniques, fracture mechanics and simulation techniques in porous rocks, fluid-structure interaction in hydraulic driven fractures, advanced numerical techniques for simulation of progressive fracture, including multiscale modeling, and micromechanical approaches for porous rocks, and quasi-static versus dynamic fractures in porous rocks. This book will serve as an important resource for petroleum, geomechanics, drilling and structural engineers, R&D managers in industry and academia. - Includes a strong editorial team and quality experts as chapter authors - Presents topics identified for individual chapters are current, relevant, and interesting - Focuses on advanced topics, such as fluid coupled fractures, rock's continuum damage mechanics, and multiscale modeling - Provides a 'one-stop' advanced-level reference for a graduate course focusing on rock's mechanics




Mechanics of Hydraulic Fracturing


Book Description

Revised to include current components considered for today's unconventional and multi-fracture grids, Mechanics of Hydraulic Fracturing, Second Edition explains one of the most important features for fracture design — the ability to predict the geometry and characteristics of the hydraulically induced fracture. With two-thirds of the world's oil and natural gas reserves committed to unconventional resources, hydraulic fracturing is the best proven well stimulation method to extract these resources from their more remote and complex reservoirs. However, few hydraulic fracture models can properly simulate more complex fractures. Engineers and well designers must understand the underlying mechanics of how fractures are modeled in order to correctly predict and forecast a more advanced fracture network. Updated to accommodate today's fracturing jobs, Mechanics of Hydraulic Fracturing, Second Edition enables the engineer to: - Understand complex fracture networks to maximize completion strategies - Recognize and compute stress shadow, which can drastically affect fracture network patterns - Optimize completions by properly modeling and more accurately predicting for today's hydraulic fracturing completions - Discusses the underlying mechanics of creating a fracture from the wellbore - Enhanced to include newer modeling components such as stress shadow and interaction of hydraulic fracture with a natural fracture, which aids in more complex fracture networks - Updated experimental studies that apply to today's unconventional fracturing cases




Rock Mechanics as a Multidisciplinary Science


Book Description

Papers in the proceedings of the 32nd U.S. Symposium on Rock Mechanics were solicited to address the theme of 'Rock Mechanics as a Multidisciplinary Science'. The major goal was to assemble scientists and practitioners from various fields with interrelated interests in rock mechanics to share their common problems and approaches. The proceedings include three papers related to a special session on 'Lunar Rock Mechanics', as well as 121 technical papers covering areas such as: field observations, in-situ stresses, instrumentation/measurement techniques, fracturing, rock properties, dynamics/seismicity, modelling, laboratory testing, discontinuities/fluid flow, design, wellbore stability, and analysis.




Fracture Mechanics of Rock


Book Description

The analysis of crack problems through fracture mechanics has been applied to the study of materials such as glass, metals and ceramics because relatively simple fracture criteria describe the failure of these materials. The increased attention paid to experimental rock fracture mechanics has led to major contributions to the solving of geophysical problems.The text presents a concise treatment of the physics and mathematics of a representative selection of problems from areas such as earthquake mechanics and prediction, hydraulic fracturing, hot dry rock geothermal energy, fault mechanics, and dynamic fragmentation.




Petroleum Related Rock Mechanics


Book Description

Engineers and geologists in the petroleum industry will find Petroleum Related Rock Mechanics, 2e, a powerful resource in providing a basis of rock mechanical knowledge - a knowledge which can greatly assist in the understanding of field behavior, design of test programs and the design of field operations. Not only does this text give an introduction to applications of rock mechanics within the petroleum industry, it has a strong focus on basics, drilling, production and reservoir engineering. Assessment of rock mechanical parameters is covered in depth, as is acoustic wave propagation in rocks, with possible link to 4D seismics as well as log interpretation. - Learn the basic principles behind rock mechanics from leading academic and industry experts - Quick reference and guide for engineers and geologists working in the field - Keep informed and up to date on all the latest methods and fundamental concepts




Mechanics of Hydraulic Fracturing


Book Description

Mechanics of Hydraulic Fracturing Comprehensive single-volume reference work providing an overview of experimental results and predictive methods for hydraulic fracture growth in rocks Mechanics of Hydraulic Fracturing: Experiment, Model, and Monitoring provides a summary of the research in mechanics of hydraulic fractures during the past two decades, plus new research trends to look for in the future. The book covers the contributions from theory, modeling, and experimentation, including the application of models to reservoir stimulation, mining preconditioning, and the formation of geological structures. The four expert editors emphasize the variety of diverse methods and tools in hydraulic fracturing and help the reader understand hydraulic fracture mechanics in complex geological situations. To aid in reader comprehension, practical examples of new approaches and methods are presented throughout the book. Key topics covered in the book include: Prediction of fracture shapes, sizes, and distributions in sedimentary basins, plus their importance in petroleum industry Real-time monitoring methods, such as micro-seismicity and trace tracking How to uncover geometries of fractures like dikes and veins Fracture growth of individual foundations and its applications Researchers and professionals working in the field of fluid-driven fracture growth will find immense value in this comprehensive reference on hydraulic fracturing mechanics.




Rock Fracture Mechanics


Book Description




Rock Mechanics


Book Description

This volume presents the proceedings of a symposium on rock mechanics, held in the USA in 1995. Topics covered include: rock dynamics; tool-rock interaction; radioactive waste disposal; underground mining; fragmentation and blasting; theoretical and model studies; hydrology; and rock creep.




Geomechanics and Hydraulic Fracturing for Shale Reservoirs


Book Description

This book is intended as a reference book for advanced graduate students and research engineers in shale gas development or rock mechanical engineering. Globally, there is widespread interest in exploiting shale gas resources to meet rising energy demands, maintain energy security and stability in supply and reduce dependence on higher carbon sources of energy, namely coal and oil. However, extracting shale gas is a resource intensive process and is dependent on the geological and geomechanical characteristics of the source rocks, making the development of certain formations uneconomic using current technologies. Therefore, evaluation of the physical and mechanical properties of shale, together with technological advancements, is critical in verifying the economic viability of such formation. Accurate geomechanical information about the rock and its variation through the shale is important since stresses along the wellbore can control fracture initiation and frac development. In addition, hydraulic fracturing has been widely employed to enhance the production of oil and gas from underground reservoirs. Hydraulic fracturing is a complex operation in which the fluid is pumped at a high pressure into a selected section of the wellbore. The interaction between the hydraulic fractures and natural fractures is the key to fracturing effectiveness prediction and high gas development. The development and growth of a hydraulic fracture through the natural fracture systems of shale is probably more complex than can be described here, but may be somewhat predictable if the fracture system and the development of stresses can be explained. As a result, comprehensive shale geomechanical experiments, physical modeling experiment and numerical investigations should be conducted to reveal the fracturing mechanical behaviors of shale.