Hydrogen Electrochemical Production


Book Description

Hydrogen Electrochemical Production presents different avenues of hydrogen production for energy applications, including current developments and future perspectives, using an interdisciplinary approach. Part of the Hydrogen Energy and Fuel Cell Primers series, the volume synthesizes information from many sources, making it a useful reference for industry professionals, researchers and graduate students. The book examines various methods, explaining their advantages and limitations. The water electrolysis reaction and systems are explored from different points of view, including an assessment of state-of-the-art technologies. Alternatives to water for feeding the electrolysis cell anode and for electrochemical hydrogen production (such as alcohol or other compounds from biomass) are discussed. - Explores current technology developments and future perspectives of hydrogen production for energy applications - Examines the state-of-the art technology in electrolysis reaction and systems and discusses the advantages and limitations of various methods - Covers alternatives to water for feeding electrolysis cell anode, including alcohol and other compounds from biomass




Electrochemical Methods for Hydrogen Production


Book Description

This book provides a comprehensive picture of the various routes to use electricity to produce hydrogen using electrochemical science and technology.




Electrochemical Power Sources: Fundamentals, Systems, and Applications


Book Description

Electrochemical Power Sources: Fundamentals, Systems, and Applications: Hydrogen Production by Water Electrolysis offers a comprehensive overview about different hydrogen production technologies, including their technical features, development stage, recent advances, and technical and economic issues of system integration. Allied processes such as regenerative fuel cells and sea water electrolysis are also covered. For many years hydrogen production by water electrolysis was of minor importance, but research and development in the field has increased significantly in recent years, and a comprehensive overview is missing. This book bridges this gap and provides a general reference to the topic.Hydrogen production by water electrolysis is the main technology to integrate high shares of electricity from renewable energy sources and balance out the supply and demand match in the energy system. Different electrochemical approaches exist to produce hydrogen from RES (Renewable Energy Sources). - Covers the fundamentals of hydrogen production by water electrolysis - Reviews all relevant technologies comprehensively - Outlines important technical and economic issues of system integration - Includes commercial examples and demonstrates electrolyzer projects




Photoelectrochemical Hydrogen Production


Book Description

Photoelectrochemical Hydrogen Production describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materials and devices, and combinatorial approaches towards the development of new materials. Finally, the economic and business perspectives of PEC devices are discussed, and promising future directions indicated. Photoelectrochemical Hydrogen Production is a one-stop resource for scientists, students and R&D practitioners starting in this field, providing both the theoretical background as well as useful practical information on photoelectrochemical measurement techniques. Experts in the field benefit from the chapters on current state-of-the-art materials/devices and future directions.




Hydrogen Production Technologies


Book Description

Provides a comprehensive practical review of the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The chapters in this book are written by distinguished authors who have extensive experience in their fields, and readers will have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies. The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. Part II addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). The final part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed.




Production of Clean Hydrogen by Electrochemical Reforming of Oxygenated Organic Compounds


Book Description

Production of Clean Hydrogen by Electrochemical Reforming of Oxygenated Organic Compounds provides a comprehensive overview of the thermodynamics and experimental results that allow the decomposition process of organic compounds leading to hydrogen to be carried out at working cell voltages much lower than those encountered in water electrolysis. The authors review different methods of synthesis and characterization of the catalysts needed to activate the electro-oxidation reaction and describe different electrolysis experiments that produce hydrogen in a Proton Exchange Membrane Electrolysis Cell (PEMEC). Other sections investigate the effect of the nature of the reactive molecules, the nature and structure of the catalysts, and more. By exploring the link between organic oxidation/conversion to hydrogen production, this book fills a gap in the existing literature and provides researchers in the field with an authoritative and comprehensive reference they can use when developing new sustainable processes and systems for hydrogen production. - Explores, in detail, the decomposition process of organic compounds leading to hydrogen - Presents foundational information, practical insights and pathways for future work in the development of proton exchange membrane electrolysis cell systems - Includes results, experimental data and interpretations using different organic compounds, such as methanol, formic acid, ethanol, glycerol and biomass




PEM Water Electrolysis


Book Description

PEM Water Electrolysis, a volume in the Hydrogen Energy and Fuel Cell Primers series presents the most recent advances in the field. It brings together information that has thus far been scattered in many different sources under one single title, making it a useful reference for industry professionals, researchers and graduate students. Volumes One and Two allow readers to identify technology gaps for commercially viable PEM electrolysis systems for energy applications and examine the fundamentals of PEM electrolysis and selected research topics that are top of mind for the academic and industry community, such as gas cross-over and AST protocols. The book lays the foundation for the exploration of the current industrial trends for PEM electrolysis, such as power to gas application and a strong focus on the current trends in the application of PEM electrolysis associated with energy storage. - Presents the fundamentals and most current knowledge in proton exchange membrane water electrolyzers - Explores the technology gaps and challenges for commercial deployment of PEM water electrolysis technologies - Includes unconventional systems, such as ozone generators - Brings together information from many different sources under one single title, making it a useful reference for industry professionals, researchers and graduate students alike




Hydrogen Production


Book Description

Covering the various aspects of this fast-evolving field, this comprehensive book includes the fundamentals and a comparison of current applications, while focusing on the latest, novel achievements and future directions. The introductory chapters explore the thermodynamic and electrochemical processes to better understand how electrolysis cells work, and how these can be combined to build large electrolysis modules. The book then goes on to discuss the electrolysis process and the characteristics, advantages, drawbacks, and challenges of the main existing electrolysis technologies. Current manufacturers and the main features of commercially available electrolyzers are extensively reviewed. The final chapters then present the possible configurations for integrating water electrolysis units with renewable energy sources in both autonomous and grid-connected systems, and comment on some relevant demonstration projects. Written by an internationally renowned team from academia and industry, the result is an invaluable review of the field and a discussion of known limitations and future perspectives.




Electrochemical Hydrogen Technologies


Book Description

The focus of this book is on electrochemical hydrogen technologies and fuel cell technologies in particular. Precipitated by the energy crisis in 1973, intensive work has been done world-wide on hydrogen technologies. Water electrolysis was the main objective. The steady increase of combustion of fossil fuels, with the ensuing CO 2 content in the environment, has led to a greater need to change the use of energy conversion and consumption. Hydrogen, based on nuclear and renewable energies, could become indispensable for energy storage and long range transport. Only electrolysis allows the conversion of electrical energy into hydrogen with high efficiency. Prior to the introduction of non-polluting but very expensive methods for energy harvesting and conversion, it is first necessary to ascertain how to save energy and to refurbish energy conversion systems to obtain the highest efficiencies with the lowest CO 2 emissions, e.g. in large scale electricity generation.Collected here in 7 chapters are the contributions of internationally known electrochemical engineers who work actively in this rapidly developing field. The relevant work reviewed extends from fundamental findings in the field of technical electrocatalysis of hydrogen and oxygen reactions to water electrolysis, chlor-alkali electrolysis (which is still practically the most important process for electrolytic hydrogen generation), thermochemical hybrid cycles and on finally to fuel cells. The latter in their advanced form of heavy, high-temperature cells promise to become the basis for highly efficient electric power plants for converting the chemical energy of fossil fuels, or hydrogen from fossil combustibles like methane, or coal into electricity with system efficiencies greater than 55%.The material presented in this volume should prove of immense value to electrochemical engineers, producers of electrolyzers and fuel cells, electrical engineers and political/technical decision makers. It will also be of use to academic teachers lecturing on electrochemistry and advanced technologies.




Solar Hydrogen Production


Book Description

Solar Hydrogen Production: Processes, Systems and Technologies presents the most recent developments in solar-driven hydrogen generation methods. The book covers different hydrogen production routes, from renewable sources, to solar harvesting technologies. Sections focus on solar energy, presenting the main thermal and electrical technologies suitable for possible integration into solar-based hydrogen production systems and present a thorough examination of solar hydrogen technologies, ranging from solar-driven water electrolysis and solar thermal methods, to photo-catalytic and biological processes. All hydrogen-based technologies are covered, including data regarding the state-of-the art of each process in terms of costs, efficiency, measured parameters, experimental analyses, and demonstration projects. In the last part of the book, the role of hydrogen in the integration of renewable sources in electric grids, transportation sector, and end-user applications is assessed, considering their current status and future perspectives. The book includes performance data, tables, models and references to available standards. It is thus a key-resource for engineering researchers and scientists, in both academic and industrial contexts, involved in designing, planning and developing solar hydrogen systems. - Offers a comprehensive overview of conventional and advanced solar hydrogen technologies, including simulation models, cost figures, R&D projects, demonstration projects, test standards, and safety and handling issues - Encompasses, in a single volume, information on solar energy and hydrogen systems - Includes detailed economic data on each technology for feasibility assessment of different systems