Hydrogen via Light Naphtha Reforming - Cost Analysis - Hydrogen E21A


Book Description

This report presents a cost analysis of Hydrogen production from light naphtha. The process examined is a typical steam reforming process. This report was developed based essentially on the following reference(s): "Hydrogen", Kirk-Othmer Encyclopedia of Chemical Technology, 5th edition Keywords: H2, Water-gas Shifting, Reformer




Reformate Production from Naphtha - Cost Analysis - Reformate E21A


Book Description

This report presents a cost analysis of Aromatic Reformate production from naphtha using a semi-regeneration process. The process examined is similar to UOP RZ Platforming process. In this process, hydrogen is generated as by-product. This report was developed based essentially on the following reference(s): "Aromatics", Encyclopedia of Hydrocarbons, Volume II, 2006 Keywords: Fixed Bed, Reformer, Benzene, Toluene, Aromatics, Reforming Process







Management of Energy/environment Systems


Book Description

Comporison of the geman democratic republic. A methodology for constructing and modeling energy/environment futures. Alternative energy/environment futures for rhone-alpes prologue: The wisconsin scenarios in retrospect. Alternative energy/environment futures for wisconsin. Cross-regional comparison of energy/environment futures.




Perspectives on Deep-Sea Mining


Book Description

This book is a sequel to ’Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations’ (2017) and ‘Environmental Issues of Deep-Sea Mining: Impacts, Consequences and Policy Perspectives’ (2019), and aims to provide a comprehensive volume on different perspectives of deep-sea mining from specialists around the world. The work is timely, as deep-sea minerals continue to enthuse researchers involved in activities such as ascertaining their potential as alternative sources for critical metals for green energy and other industrial applications, as well as technology development for their sustainable exploration and exploitation, while addressing environmental concerns. With a steady increase in the number of contractors having exclusive rights over large tracts of seafloor in the ‘Area’, i.e. area beyond national jurisdictions, the International Seabed Authority, mandated with the responsibility of regulating such activities, is in the process of developing a code for exploitation of deep-sea minerals. These, coupled with growing interest among private entrepreneurs, investment companies and policy makers, underscore the need for updated information to be made available in one place on the subject of deep-sea mining. The book evaluates the potential and sustainability of mining for deep-sea minerals compared to other land-based deposits, the technologies needed for mining and processing of ores, the approach towards environmental monitoring and management, as well as the regulatory frameworks and legal challenges to manage deep-sea mining activities. The book is expected to serve as an important reference for all stakeholders including researchers, contractors, mining companies, regulators and NGOs involved in deep-sea mining.




Hydrogen Power: Theoretical and Engineering Solutions


Book Description

This volume contains selected contributions to the second Hydrogen Power, Theoretical and Engineering Solutions, International Symposium (HYPOTHESIS II), held in Grimstad, Norway, from 18 to 22 August 1997. The scientific programme included 10 oral sessions and a poster session. Widely based national committees, supported by an International Scientific Advisory Board and the International Coordinators, made every effort to design and bring together a programme of great excellence. The more than one hundred papers submitted represent the efforts of research groups from all over the World. The international character of HYPOTHESIS II has been augmented by contributions coming from seven countries outside Europe. The contributions reflect the progress that has been achieved in hydrogen technology aimed primarily at hydrogen as the ultimate energy vector. This research have already yielded mature technologies for mass production in many areas. These and future results will be of increased interest and importance as global and local environmental issues move higher up the political agenda. In order to facilitate new contacts between scientists and strengthen existing ones, the symposium incorporated an extensive social program managed by the Conference Administrator, Ms. Ann Y stad.




CO2 Sequestration and Valorization


Book Description

The reconciliation of economic development, social justice and reduction of greenhouse gas emissions is one of the biggest political challenges of the moment. Strategies for mitigating CO2 emissions on a large scale using sequestration, storage and carbon technologies are priorities on the agendas of research centres and governments. Research on carbon sequestration is the path to solving major sustainability problems of this century a complex issue that requires a scientific approach and multidisciplinary and interdisciplinary technology, plus a collaborative policy among nations. Thus, this challenge makes this book an important source of information for researchers, policymakers and anyone with an inquiring mind on this subject.




Algae Based Polymers, Blends, and Composites


Book Description

Algae Based Polymers, Blends, and Composites: Chemistry, Biotechnology and Material Sciences offers considerable detail on the origin of algae, extraction of useful metabolites and major compounds from algal bio-mass, and the production and future prospects of sustainable polymers derived from algae, blends of algae, and algae based composites. Characterization methods and processing techniques for algae-based polymers and composites are discussed in detail, enabling researchers to apply the latest techniques to their own work. The conversion of bio-mass into high value chemicals, energy, and materials has ample financial and ecological importance, particularly in the era of declining petroleum reserves and global warming. Algae are an important source of biomass since they flourish rapidly and can be cultivated almost everywhere. At present the majority of naturally produced algal biomass is an unused resource and normally is left to decompose. Similarly, the use of this enormous underexploited biomass is mainly limited to food consumption and as bio-fertilizer. However, there is an opportunity here for materials scientists to explore its potential as a feedstock for the production of sustainable materials. - Provides detailed information on the extraction of useful compounds from algal biomass - Highlights the development of a range of polymers, blends, and composites - Includes coverage of characterization and processing techniques, enabling research scientists and engineers to apply the information to their own research and development - Discusses potential applications and future prospects of algae-based biopolymers, giving the latest insight into the future of these sustainable materials




Chemical Reaction Engineering


Book Description

Chemical Reaction Engineering: Essentials, Exercises and Examples presents the essentials of kinetics, reactor design and chemical reaction engineering for undergraduate students. Concise and didactic in its approach, it features over 70 resolved examples and many exercises.The work is organized in two parts: in the first part kinetics is presented




Catalytic Ammonia Synthesis


Book Description

The phenomenon of catalysis is found in many homogeneous and heterogeneous systems undergoing chemical change, where it effects the rates of approach to the equilibrium state in processes as diverse as those found in the stars, the earth's mantle, living organisms, and the various chemistries utilized by industry. The economies and the living standards of both developed and developing countries depend to varying degrees upon the efficacy of their chemical industries. Con sequently, this century has seen a wide exploration and expansion of catalytic chemistry together with an intensive investigation of specific, essential processes like those contributing to life-supporting agricultures. Prime among the latter must surely be the "fixation" of atmospheric nitrogen by catalytic hydrogenation to anhydrous ammonia, still the preferred synthetic precursor of the nitrogenous components of fertilizers. In each decade contemporary concepts and techniques have been used to further the understanding, as yet incomplete, of the catalyst, the adsorbates, the surface reactions, and the technology of large-scale operation. The contributors to the present volume review the state of the art, the science, and the technology; they reveal existing lacunae, and suggest ways forward. Around the turn of the century, Sabatier's school was extending the descriptive catalytic chemistry of hydrogenation by metals to include almost all types of multiple bond. The triple bond of dinitrogen, which continued to be more resistant than the somewhat similar bonds in carbon monoxide and ethyne, defied their efforts.