Hydrologic Remote Sensing


Book Description

Environmental remote sensing plays a critical role in observing key hydrological components such as precipitation, soil moisture, evapotranspiration and total water storage on a global scale. As water security is one of the most critical issues in the world, satellite remote sensing techniques are of particular importance for emerging regions which have inadequate in-situ gauge observations. This book reviews multiple remote sensing observations, the application of remote sensing in hydrological modeling, data assimilation and hydrological capacity building in emerging regions.




Multiscale Hydrologic Remote Sensing


Book Description

Multiscale Hydrologic Remote Sensing: Perspectives and Applications integrates advances in hydrologic science and innovative remote sensing technologies. Raising the visibility of interdisciplinary research on water resources, it offers a suite of tools and platforms for investigating spatially and temporally continuous hydrological variables and p




Remote Sensing in Hydrology and Water Management


Book Description

The book provides comprehensive information on possible applications of remote sensing data for hydrological monitoring and modelling as well as for water management decisions. Mathematical theory is provided only as far as it is necessary for understanding the underlying principles. The book is especially timely because of new programs and sensors that are or will be realised. ESA, NASA, NASDA as well as the Indian and the Brazilian Space Agency have recently launched satellites or developed plans for new sensor systems that will be especially pertinent to hydrology and water management. New techniques are presented whose structure differ from conventional hydrological models due to the nature of remotely sensed data.




Satellite Remote Sensing in Hydrological Data Assimilation


Book Description

This book presents the fundamentals of data assimilation and reviews the application of satellite remote sensing in hydrological data assimilation. Although hydrological models are valuable tools to monitor and understand global and regional water cycles, they are subject to various sources of errors. Satellite remote sensing data provides a great opportunity to improve the performance of models through data assimilation.




Land Surface Remote Sensing in Continental Hydrology


Book Description

The continental hydrological cycle is one of the least understood components of the climate system. The understanding of the different processes involved is important in the fields of hydrology and meteorology.In this volume the main applications for continental hydrology are presented, including the characterization of the states of continental surfaces (water state, snow cover, etc.) using active and passive remote sensing, monitoring the Antarctic ice sheet and land water surface heights using radar altimetry, the characterization of redistributions of water masses using the GRACE mission, the potential of GNSS-R technology in hydrology, and remote sensing data assimilation in hydrological models.This book, part of a set of six volumes, has been produced by scientists who are internationally renowned in their fields. It is addressed to students (engineers, Masters, PhD) , engineers and scientists, specialists in remote sensing applied to hydrology. Through this pedagogical work, the authors contribute to breaking down the barriers that hinder the use of Earth observation data. - Provides clear and concise descriptions of modern remote sensing methods - Explores the most current remote sensing techniques with physical aspects of the measurement (theory) and their applications - Provides chapters on physical principles, measurement, and data processing for each technique described - Describes optical remote sensing technology, including a description of acquisition systems and measurement corrections to be made




Remote Sensing in Hydrology


Book Description




Remote Sensing of the Terrestrial Water Cycle


Book Description

Remote Sensing of the Terrestrial Water Cycle is an outcome of the AGU Chapman Conference held in February 2012. This is a comprehensive volume that examines the use of available remote sensing satellite data as well as data from future missions that can be used to expand our knowledge in quantifying the spatial and temporal variations in the terrestrial water cycle. Volume highlights include: An in-depth discussion of the global water cycle Approaches to various problems in climate, weather, hydrology, and agriculture Applications of satellite remote sensing in measuring precipitation, surface water, snow, soil moisture, groundwater, modeling, and data assimilation A description of the use of satellite data for accurately estimating and monitoring the components of the hydrological cycle Discussion of the measurement of multiple geophysical variables and properties over different landscapes on a temporal and a regional scale







Floods in a Changing Climate


Book Description

"Hydrologic modelling of floods enables more accurate assessment of climate change impacts on flood magnitudes and frequencies. This book synthesises various modelling methodologies available to aid planning and operational decision making, with emphasis on methodologies applicable in data scarce regions, such as developing countries. Topics covered include: physical processes which transform precipitation into flood runoff, flood routing, assessment of likely changes in flood frequencies and magnitudes under climate change scenarios, and use of remote sensing, GIS and DEM technologies in modelling of floods to aid decision making. Problems included in each chapter, and supported by links to available online data sets and modelling tools accessible at www.cambridge.org/mujumdar, engage the reader with practical applications of the models"--




Principles of Snow Hydrology


Book Description

Principles of Snow Hydrology describes the factors that control the accumulation, melting and runoff of water from seasonal snowpacks over the surface of the earth. The book addresses not only the basic principles governing snow in the hydrologic cycle, but also the latest applications of remote sensing, and techniques for modeling streamflow from snowmelt across large mixed land-use river basins. Individual chapters are devoted to climatology and distribution of snow, snowpack energy exchange, snow chemistry, ground-based measurements and remote sensing of snowpack characteristics, snowpack management, and modeling snowmelt runoff. Many chapters have review questions and problems with solutions available online. This book is a reference book for practicing water resources managers and a text for advanced hydrology and water resources courses which span fields such as engineering, earth sciences, meteorology, biogeochemistry, forestry and range management, and water resources planning.