Hypersonic and High Temperature Gas Dynamics


Book Description

This book is a self-contained text for those students and readers interested in learning hypersonic flow and high-temperature gas dynamics. It assumes no prior familiarity with either subject on the part of the reader. If you have never studied hypersonic and/or high-temperature gas dynamics before, and if you have never worked extensively in the area, then this book is for you. On the other hand, if you have worked and/or are working in these areas, and you want a cohesive presentation of the fundamentals, a development of important theory and techniques, a discussion of the salient results with emphasis on the physical aspects, and a presentation of modern thinking in these areas, then this book is also for you. In other words, this book is designed for two roles: 1) as an effective classroom text that can be used with ease by the instructor, and understood with ease by the student; and 2) as a viable, professional working tool for engineers, scientists, and managers who have any contact in their jobs with hypersonic and/or high-temperature flow.




Hypersonic Flow Research


Book Description

Progress in Astronautics and Rocketry, Volume 7: Hypersonic Flow Research compiles papers presented at a conference on hypersonics held at the Massachusetts Institute of Technology in August 1961. This book discusses the low Reynolds number effects, chemical kinetics effects, inviscid flow calculations, and experimental techniques relating to the problems in acquiring an understanding of hypersonic flow. The structure and composition of hypersonic wakes with attendant complex chemical kinetic effects is only briefly mentioned. This text consists of five parts. Parts A to C comprise of theoretical papers on the problems of calculating flow fields at hypersonic speeds. The experimental techniques that are of immediate practical interest in view of the difficulty of flight testing are discussed in Parts D and E. This publication is beneficial to engineers involved in advanced design problems.




Nonequilibrium Flows


Book Description




Hypersonic Aerothermodynamics


Book Description

A modern treatment of hypersonic aerothermodynamics for students, engineers, scientists, and program managers involved in the study and application of hypersonic flight. It assumes an understanding of the basic principles of fluid mechanics, thermodynamics, compressible flow, and heat transfer. Ten chapters address: general characterization of hypersonic flows; basic equations of motion; defining the aerothermodynamic environment; experimental measurements of hypersonic flows; stagnation-region flowfield; the pressure distribution; the boundary layer and convective heat transfer; aerodynamic forces and moments; viscous interactions; and aerothermodynamics and design considerations. Includes sample exercises and homework problems. Annotation copyright by Book News, Inc., Portland, OR







Molecular Physics and Hypersonic Flows


Book Description

Molecular Physics and Hypersonic Flows bridges the gap between the fluid dynamics and molecular physics communities, emphasizing the role played by elementary processes in hypersonic flows. In particular, the work is primarily dedicated to filling the gap between microscopic and macroscopic treatments of the source terms to be inserted in the fluid dynamics codes. The first part of the book describes the molecular dynamics of elementary processes both in the gas phase and in the interaction with surfaces by using quantum mechanical and phenomenological approaches. A second group of contributions describes thermodynamics and transport properties of air components, with special attention to the transport of internal energy. A series of papers is devoted to the experimental and theoretical study of the flow of partially ionized gases. Subsequent contributions treat modern computational techniques for 3-D hypersonic flow. Non-equilibrium vibrational kinetics are then described, together with the coupling of vibration-dissociation processes as they affect hypersonic flows. Special emphasis is given to the interfacing of non-equilibrium models with computational fluid dynamics methods. Finally, the last part of the book deals with the application of direct Monte Carlo methods in describing rarefied flows.




Hypersonic Inviscid Flow


Book Description

Unified, self-contained view of nonequilibrium effects, body geometries, and similitudes available in hypersonic flow and thin shock layer; appropriate for graduate-level courses in hypersonic flow theory. 1966 edition.




Hypersonic Flow Theory


Book Description

Hypersonic Flow Theory presents the fundamentals of fluid mechanics, focusing on the hypersonic flow theory and approaches in theoretical aerodynamics. This book discusses the assumptions underlying hypersonic flow theory, unified supersonic-hypersonic similitude, two-dimensional and axisymmetric bodies, and circular cylinder. The constant-streamtube-area approximation, streamtube-continuity methods, and tangent-wedge and tangent-cone are also deliberated. This text likewise covers the similar laminar boundary layer solutions, bluntness induced interactions on slender bodies, and free molecule transfer theory. The dynamics of hypersonic flight or hypersonic wing theory, magnetohydrodynamic theory, or any developments involving treatment of the Boltzmann equation are not included. This publication is intended for hypersonic aerodynamicists, students, and researchers conducting work on the hypersonic flow phenomena.







Introduction to Hypersonic Flow


Book Description

Introduction to Hypersonic Flow has been made available to the English speaking reader because of its usefulness for those individuals desirous of obtaining an introduction to the subject. Written by an internationally acknowledged expert in the field of hypersonic flow, the book makes available heretofore unpublished Soviet work, as well as published work little known outside the Soviet Union. The author has however made every effort to include, where appropriate. Western references for the work he discusses. Starting with a general introductory chapter on hypersonic aerodynamics and aerodynamic problems, the remainder of the book concentrates on the inviscid, perfect fluid aspects of hypersonic flow, with emphasis on the fundamental concepts and rational methods of calculation. The book is directed to students of aerodynamics and gas dynamics, as well as to scientists and engineers interested in problems of hypersonic flight. The level of approach is such that it should prove particularly useful as an undergraduate and introductory graduate text.