Hypoxia and Cancer Metastasis


Book Description

The present book is an attempt to provide a detailed review of studies that clarify our current understanding of the role of hypoxia in the progression of primary cancer to metastatic disease. It will enable researchers to discover the critical cellular changes that occur under hypoxic conditions and play a role in metastatic dissemination, from the activation of hypoxia-inducible factors, HIF-1 and HIF-2, to the transcriptional profile changes that occur in cancer cells and promote cancer cell survival under detrimental conditions. Readers will discover the methods and challenges involved in imaging and quantifying the degree of hypoxia in a primary tumor. We will provide an understanding of the hypoxia-induced phenotypes that influence heterogeneity, alter the secretome and tumor microenvironment, modify cellular metabolism, and promote immune suppression and resistance to chemotherapy. Finally, we will uncover the therapeutic strategies that are being devised to target the hypoxic microenvironment in the hopes of preventing metastasis and improving the efficacy of standard-of-care cancer treatments. This work is an up to date source of information on the challenges and complexity of the hypoxic tumor microenvironment. Basic and translational scientists, post-doctoral fellows, graduate students, and those interested in how tumors metastasize will find this book a reference that details how hypoxia influences metastatic disease.




Tumor Oxygenation


Book Description




Hypoxia in Cancer: Significance and Impact on Cancer Therapy


Book Description

This book reviews the central role of hypoxia in cancer initiation and progression. It discusses the mechanisms of hypoxia in chemoresistance, radioresistance, angiogenesis, vasculogenesis, metastasis, metabolic, and genomic instability. It also explores the potential of hypoxia in the diagnosis and treatment of cancer. The book provides an overview of hypoxia imaging, its biological relevance, and mechanism of action. It helps in understanding the molecular mechanisms of the regulation of senescence by hypoxia. It explores the contribution of hypoxia to immune resistance and immune suppression/tolerance and determines the hypoxia-responsive long non-coding RNAs in regulating hypoxic gene expression at chromatin, transcriptional, and post-transcriptional levels. Further, it presents the functional link between hypoxia and miRNA expressions and hypoxia-regulated miRNAs in cancer cell survival in a low oxygen environment. Lastly, it discusses the applications of tumor-on-a-chip technology for the understanding of hypoxia-tumor microenvironment. This book is a valuable source for oncologists and scientists working to understand the role of hypoxia in cancer and therapeutic approaches.




Hypoxia and Cancer


Book Description

​​​The imbalance between rapidly proliferating tumor cells and inadequate and inefficient tumor vasculature leads to a decrease in oxygen levels (hypoxia and/or anoxia) in tumor tissues. Intra-tumor hypoxia profoundly affects the biological behavior of cancer cells, which become resistant to conventional therapies and acquire a more invasive and metastatic phenotype. Hypoxia is a hallmark of the malignant phenotype and a key feature of the tumor microenvironment. Hypoxia Inducible Factor 1 (HIF-1) is a master regulator of the transcriptional response to oxygen deprivation. HIF triggers the expression of genes whose products induce angiogenesis, decrease oxygen consumption, switch metabolism to glycolysis, maintain a stem cell phenotype and select for more invasive and metastatic cells. Therapeutic approaches targeting HIF, directly or downstream mediators of its transcriptional activity, are being developed. Intra-tumor hypoxia is a topic has been gaining scientific interest over the last few years for its wide involvement in many physiological and pathological processes. This volume will cover the latest research and translational aspects associated with intra-tumor hypoxia, along with opportunities for drug development offered by this unique feature of the tumor microenvironment. The ongoing efforts to translate our understanding of the biology underlying intra-tumor hypoxia in viable therapeutic options face many challenges, but this book will provide an opportunity for an in-depth analysis of the fundamental mechanisms implicated in the adaption to low oxygen levels and will scrutinize the potential for opportunities that are being pursued in both research and the drug development industry.




Oxygen Transport to Tissue XXVI


Book Description

The International Society of Oxygen Transport to Tissue (ISOTT) was founded in 1973 to provide a forum for bioengineers, basic scientists, physiologists, and physicians to discuss new data, original theories, new interpretations of old data, and new technologies for the measurement of oxygen. At each annual meeting all posters are presented orally along with plenary lectures, and all presentations are given in a general session attended by everyone. Each meeting has had a specific focus, ranging from neonatology to physical chemistry to cancer biology. The Society has helped to build many careers, through opportunities to meet leaders in the field, and through awards made to young physicians and scientists. The Society also, through cross fertilization of ideas and scientific comradery, has inspired many breakthroughs in clinical medicine that now benefit mankind. I find myself president of the society after having been a winner of the Melvin Knisely Award for young scientists, in 1991. The 2003 meeting emphasized the role of oxygen and oxygen measurement in tumor growth, metastasis, physiology, and treatment resistance. Additionally, however, completely novel approaches to measurement of tissue oxygen were presented (notably work by Dr. Takahashi) and molecular methods for estimating tissue oxygen were evaluated. Papers discussing other aspects of oxygen measurement and pathophysiology were presented including in vivo ESR spectroscopy (notably including Dr. Swartz and colleagues), exercise physiology, organ transplant outcome (discussed by Dr. Cicco, our 2004 president), circulatory physiology, and cerebral oxygenation (notably including Dr. Chance).




The Heterogeneity of Cancer Metabolism


Book Description

Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.




Tumor Hypoxia


Book Description

Tumors often start out as a benign growth, but gradually progress toward the malignant stage over a relatively long period of time. Tumor progression results from accumulated genetic mutations and inheritable epigenetic modifications that enable clonal evolution and selection of new clonal populations of tumor cells with aggressive characteristics including metastasis and therapy resistance. Increasing amounts of experimental evidence suggests that tumor microenvironment play a significant role in directing clonal evolution and determining clonal cell fate, which eventually leads to emergence of malignant tumor cell clones. Hypoxia is the most commonly observed feature of tumor microenvironment. Tumor hypoxia is significantly associated with malignant progression and predicts poor patient outcomes. This book provides detailed and up-to-date treaties on the role of hypoxia as a major driving force in tumor microenvironment to elicit cellular adaptation and clonal selection via genetic mutations and epigenetic modifications, to facilitate cancer stem cell maintenance, to enhance metastasis, to augment therapy resistance, and to evade immune surveillance.




Hypoxia and Cancer Metastasis


Book Description

The present book is an attempt to provide a detailed review of studies that clarify our current understanding of the role of hypoxia in the progression of primary cancer to metastatic disease. It will enable researchers to discover the critical cellular changes that occur under hypoxic conditions and play a role in metastatic dissemination, from the activation of hypoxia-inducible factors, HIF-1 and HIF-2, to the transcriptional profile changes that occur in cancer cells and promote cancer cell survival under detrimental conditions. Readers will discover the methods and challenges involved in imaging and quantifying the degree of hypoxia in a primary tumor. We will provide an understanding of the hypoxia-induced phenotypes that influence heterogeneity, alter the secretome and tumor microenvironment, modify cellular metabolism, and promote immune suppression and resistance to chemotherapy. Finally, we will uncover the therapeutic strategies that are being devised to target the hypoxic microenvironment in the hopes of preventing metastasis and improving the efficacy of standard-of-care cancer treatments. This work is an up to date source of information on the challenges and complexity of the hypoxic tumor microenvironment. Basic and translational scientists, post-doctoral fellows, graduate students, and those interested in how tumors metastasize will find this book a reference that details how hypoxia influences metastatic disease.




Diverse Effects of Hypoxia on Tumor Progression


Book Description

Hypoxia, defined as reduced oxygen tension, is a common physiological phenomenon in both normal embryonic development and malignancy progression. Although severe hypoxia is generally toxic for both normal tissue and tumors, neoplastic cells gradually adapt to prolonged hypoxia though additional genetic and genomic changes with a net result that hypoxia promotes tumor progression and therapeutic resistance. Hypoxia promotes cancer progression by regulating various aspects of cancer biology, including radiotherapy resistance, metabolism, angiogenesis and invasion/migration




Oxygen Transport to Tissue XXXVII


Book Description

This book contains the refereed contributions from the 42nd annual meeting of ISOTT. The annual meetings of ISOTT bring together scientists from various fields (medicine, physiology, mathematics, biology, chemistry, physics, engineering, etc.) in a unique international forum. ISOTT conferences are a place where an atmosphere of interaction is created, where many questions are asked after each presentation and lively discussions occur at a high scientific level. This vivid interaction is the main motivation for members to participate and gain new ideas and knowledge in the broad field of oxygen transport to tissue. The papers in this volume summarize some of the outstanding contributions from the 42nd annual meeting, which included sessions on: cellular hypoxia and mitochondria; blood substitutes and oxygen therapeutics; oxygen transport in critical care medicine and disease; muscle oxygenation; multi modal imaging techniques; brain oxygenation and imaging; optical techniques for oxygen measurement; microcirculation; mathematical modelling of oxygen transport; and cancer metabolism.