I. M. Gelfand Seminar, Parts 1 And 2


Book Description

This volume contains papers by participants in the celebrated seminar of I. M. Gelfand, which ran for more than forty years at Moscow State University. Among the authors are some of the world's most renowned mathematicians. The high scientific level of the articles makes this an important contribution to the literature.




I. M. Gelfand Seminar


Book Description




I. M. Gelfand Seminar


Book Description







The Gelfand Mathematical Seminars, 1990–1992


Book Description

This Seminar began in Moscow in November 1943 and has continued without interruption up to the present. We are happy that with this vol ume, Birkhiiuser has begun to publish papers of talks from the Seminar. It was, unfortunately, difficult to organize their publication before 1990. Since 1990, most of the talks have taken place at Rutgers University in New Brunswick, New Jersey. Parallel seminars were also held in Moscow, and during July, 1992, at IRES in Bures-sur-Yvette, France. Speakers were invited to submit papers in their own style, and to elaborate on what they discussed in the Seminar. We hope that readers will find the diversity of styles appealing, and recognize that to some extent this reflects the diversity of styles in a mathematical society. The principal aim was to have interesting talks, even if the topic was not especially popular at the time. The papers listed in the Table of Contents reflect some of the rich variety of ideas presented in the Seminar. Not all the speakers submit ted papers. Among the interesting talks that influenced the seminar in an important way, let us mention, for example, that of R. Langlands on per colation theory and those of J. Conway and J. McKay on sporadic groups. In addition, there were many extemporaneous talks as well as short discus sions.




Northern California Symplectic Geometry Seminar


Book Description

The 12 papers are from various meeting of the seminar, which has met regularly since 1989. They discuss the quantization of symplectic orbitfolds and group actions; Hamiltonian dynamical systems without period orbits; the stabilization of symplectic inequalities and applications; Engel deformations and contact structures; quantum products for mapping tori and the Atiya-Floer conjecture; the cohomology rings of Hamiltonian T-spaces; symmetric spaces, Kahler geometry, and Hamiltonian dynamics; the mirror formula for quintic threefolds; the virtual moduli cycle; Floer homology, Novikov rings, and complete intersections; surgery, quantum cohomology, and birational geometry; and group symplectic automorphisms. They are not indexed. Annotation copyrighted by Book News, Inc., Portland, OR.




The Arnold-Gelfand Mathematical Seminars


Book Description

It is very tempting but a little bit dangerous to compare the style of two great mathematicians or of their schools. I think that it would be better to compare papers from both schools dedicated to one area, geometry and to leave conclusions to a reader of this volume. The collaboration of these two schools is not new. One of the best mathematics journals Functional Analysis and its Applications had I.M. Gelfand as its chief editor and V.I. Arnold as vice-chief editor. Appearances in one issue of the journal presenting remarkable papers from seminars of Arnold and Gelfand always left a strong impact on all of mathematics. We hope that this volume will have a similar impact. Papers from Arnold's seminar are devoted to three important directions developed by his school: Symplectic Geometry (F. Lalonde and D. McDuff), Theory of Singularities and its applications (F. Aicardi, I. Bogaevski, M. Kazarian), Geometry of Curves and Manifolds (S. Anisov, V. Chekanov, L. Guieu, E. Mourre and V. Ovsienko, S. Gusein-Zade and S. Natanzon). A little bit outside of these areas is a very interesting paper by M. Karoubi Produit cyclique d'espaces et operations de Steenrod.




Nonlinear Waves and Weak Turbulence


Book Description

This book is a collection of papers on dynamical and statistical theory of nonlinear wave propagation in dispersive conservative media. Emphasis is on waves on the surface of an ideal fluid and on Rossby waves in the atmosphere. Although the book deals mainly with weakly nonlinear waves, it is more than simply a description of standard perturbation techniques. The goal is to show that the theory of weakly interacting waves is naturally related to such areas of mathematics as Diophantine equations, differential geometry of waves, Poincare normal forms and the inverse scattering method.




The Gelfand Mathematical Seminars, 1993–1995


Book Description

The Seminar has taken place at Rutgers University in New Brunswick, New Jersey, since 1990 and it has become a tradition, starting in 1992, that the Seminar be held during July at IHES in Bures-sur-Yvette, France. This is the second Gelfand Seminar volume published by Birkhauser, the first having covered the years 1990-1992. Most of the papers in this volume result from Seminar talks at Rutgers, and some from talks at IHES. In the case of a few of the papers the authors did not attend, but the papers are in the spirit of the Seminar. This is true in particular of V. Arnold's paper. He has been connected with the Seminar for so many years that his paper is very natural in this volume, and we are happy to have it included here. We hope that many people will find something of interest to them in the special diversity of topics and the uniqueness of spirit represented here. The publication of this volume would be impossible without the devoted attention of Ann Kostant. We are extremely grateful to her. I. Gelfand J. Lepowsky M. Smirnov Questions and Answers About Geometric Evolution Processes and Crystal Growth Fred Almgren We discuss evolutions of solids driven by boundary curvatures and crystal growth with Gibbs-Thomson curvature effects. Geometric measure theo retic techniques apply both to smooth elliptic surface energies and to non differentiable crystalline surface energies.




Automorphic Forms and Galois Representations: Volume 2


Book Description

Automorphic forms and Galois representations have played a central role in the development of modern number theory, with the former coming to prominence via the celebrated Langlands program and Wiles' proof of Fermat's Last Theorem. This two-volume collection arose from the 94th LMS-EPSRC Durham Symposium on 'Automorphic Forms and Galois Representations' in July 2011, the aim of which was to explore recent developments in this area. The expository articles and research papers across the two volumes reflect recent interest in p-adic methods in number theory and representation theory, as well as recent progress on topics from anabelian geometry to p-adic Hodge theory and the Langlands program. The topics covered in volume two include curves and vector bundles in p-adic Hodge theory, associators, Shimura varieties, the birational section conjecture, and other topics of contemporary interest.