Geometric Integration Theory


Book Description

This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.




Diophantine Approximation


Book Description

This volume contains 21 research and survey papers on recent developments in the field of diophantine approximation, which are based on lectures given at a conference at the Erwin Schrödinger-Institute (Vienna, 2003). The articles are either in the spirit of more classical diophantine analysis or of a geometric or combinatorial flavor. Several articles deal with estimates for the number of solutions of diophantine equations as well as with congruences and polynomials.




Exotic Smoothness And Physics: Differential Topology And Spacetime Models


Book Description

The recent revolution in differential topology related to the discovery of non-standard (”exotic”) smoothness structures on topologically trivial manifolds such as R4 suggests many exciting opportunities for applications of potentially deep importance for the spacetime models of theoretical physics, especially general relativity. This rich panoply of new differentiable structures lies in the previously unexplored region between topology and geometry. Just as physical geometry was thought to be trivial before Einstein, physicists have continued to work under the tacit — but now shown to be incorrect — assumption that differentiability is uniquely determined by topology for simple four-manifolds. Since diffeomorphisms are the mathematical models for physical coordinate transformations, Einstein's relativity principle requires that these models be physically inequivalent. This book provides an introductory survey of some of the relevant mathematics and presents preliminary results and suggestions for further applications to spacetime models.




MATHKNOW


Book Description

Mathematics forms bridges between knowledge, tradition, and contemporary life. The continuous development and growth of its many branches, both classical and modern, permeates and fertilizes all aspects of applied science and technology, and so has a vital impact on our modern society. The book will focus on these aspects and will benefit from the contribution of several world-famous scientists from mathematics and related sciences, such as: Ralph Abraham, Andrew Crumey, Peter Markowich, Claudio Procesi, Clive Ruggles, Ismail Serageldin, Amin Shokrollahi, Tobias Wallisser.




Mathematical Analysis


Book Description

* Embraces a broad range of topics in analysis requiring only a sound knowledge of calculus and the functions of one variable. * Filled with beautiful illustrations, examples, exercises at the end of each chapter, and a comprehensive index.




Optimal Transport for Applied Mathematicians


Book Description

This monograph presents a rigorous mathematical introduction to optimal transport as a variational problem, its use in modeling various phenomena, and its connections with partial differential equations. Its main goal is to provide the reader with the techniques necessary to understand the current research in optimal transport and the tools which are most useful for its applications. Full proofs are used to illustrate mathematical concepts and each chapter includes a section that discusses applications of optimal transport to various areas, such as economics, finance, potential games, image processing and fluid dynamics. Several topics are covered that have never been previously in books on this subject, such as the Knothe transport, the properties of functionals on measures, the Dacorogna-Moser flow, the formulation through minimal flows with prescribed divergence formulation, the case of the supremal cost, and the most classical numerical methods. Graduate students and researchers in both pure and applied mathematics interested in the problems and applications of optimal transport will find this to be an invaluable resource.




Mathematical Olympiad Treasures


Book Description

Mathematical Olympiad Treasures aims at building a bridge between ordinary high school exercises and more sophisticated, intricate and abstract concepts in undergraduate mathematics. The book contains a stimulating collection of problems in the subjects of algebra, geometry, trigonometry, number theory and combinatorics. While it may be considered a sequel to "Mathematical Olympiad Challenges," the focus is on engaging a wider audience to apply techniques and strategies to real-world problems. Throughout the book students are encouraged to express their ideas, conjectures, and conclusions in writing. The goal is to help readers develop a host of new mathematical tools that will be useful beyond the classroom and in a number of disciplines.




Mathematical Conversations


Book Description

Approximately fifty articles that were published in The Mathematical Intelligencer during its first eighteen years. The selection demonstrates the wide variety of attractive articles that have appeared over the years, ranging from general interest articles of a historical nature to lucid expositions of important current discoveries. Each article is introduced by the editors. "...The Mathematical Intelligencer publishes stylish, well-illustrated articles, rich in ideas and usually short on proofs. ...Many, but not all articles fall within the reach of the advanced undergraduate mathematics major. ... This book makes a nice addition to any undergraduate mathematics collection that does not already sport back issues of The Mathematical Intelligencer." D.V. Feldman, University of New Hamphire, CHOICE Reviews, June 2001.




Total Positivity and Its Applications


Book Description

This volume contains both invited lectures and contributed talks presented at the meeting on Total Positivity and its Applications held at the guest house of the University of Zaragoza in Jaca, Spain, during the week of September 26-30, 1994. There were present at the meeting almost fifty researchers from fourteen countries. Their interest in thesubject of Total Positivity made for a stimulating and fruitful exchange of scientific information. Interest to participate in the meeting exceeded our expectations. Regrettably, budgetary constraints forced us to restriet the number of attendees. Professor S. Karlin, of Stanford University, who planned to attend the meeting had to cancel his participation at the last moment. Nonetheless, his almost universal spiritual presence energized and inspired all of us in Jaca. More than anyone, he influenced the content, style and quality of the presentations given at the meeting. Every article in these Proceedings (except some by Karlin hirnself) references his influential treatise Total Positivity, Volume I, Stanford University Press, 1968. Since its appearance, this book has intrigued and inspired the minds of many researchers (one of us, in his formative years, read the galley proofs and the other of us first doubted its value but then later became its totally committed disciple). All of us present at the meeting encourage Professor Karlin to return to the task of completing the anxiously awaited Volume 11 of Total Positivity.




Lie Theory and Its Applications in Physics


Book Description

Traditionally, Lie Theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrisation of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry which is very helpful in understanding its structure. Geometrisation and symmetries are meant in their broadest sense, i.e., classical geometry, differential geometry, groups and quantum groups, infinite-dimensional (super-)algebras, and their representations. Furthermore, we include the necessary tools from functional analysis and number theory. This is a large interdisciplinary and interrelated field. Samples of these new trends are presented in this volume, based on contributions from the Workshop “Lie Theory and Its Applications in Physics” held near Varna, Bulgaria, in June 2011. This book is suitable for an extensive audience of mathematicians, mathematical physicists, theoretical physicists, and researchers in the field of Lie Theory.