Ice Accretions and Icing Effects for Modern Airfoils


Book Description

Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented.




Ice Accretions and Icing Effects for Modern Airfoils


Book Description

Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented. Addy, Harold E., Jr. Glenn Research Center RTOP 548-21-23




Ice Accretions and Icing Effects for Modern Airfoils


Book Description

Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented.




Ice Accretions and Icing Effects for Modern Airfoils


Book Description

Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented.




Ice Accretion and Icing Technology


Book Description

The effects of inflight atmospheric icing can be devastating to aircraft. Universities and industry have been hard at work to respond to the challenge of maintaining flight safety in all weather conditions. Proposed changes in the regulations for operation in icing conditions are sure to keep this type of research and development at its highest level. This is especially true for the effects of ice crystals in the atmosphere, and for the threat associated with supercooled large drop (SLD) icing. This collection of ten SAE International technical papers brings together vital contributions to the subject. Icing on aircraft surfaces would not be a problem if a material were discovered that prevented the freezing and accretion of supercooled drops. Many options that appeared to have promising icephobic properties have had serious shortfalls in durability. This title addresses, among other topics, the measurement techniques and the drop physics that apply to icing, certification for flight through ice crystal clouds and in supercooled large drops, improvements in predictive techniques, scaling methods, test facilities and techniques, and rotorcraft icing.




Handbook of Numerical Simulation of In-Flight Icing


Book Description

This Handbook of Numerical Simulation of In-Flight Icing covers an array of methodologies and technologies on numerical simulation of in-flight icing and its applications. Comprised of contributions from internationally recognized experts from the Americas, Asia, and the EU, this authoritative, self-contained reference includes best practices and specification data spanning the gamut of simulation tools available internationally that can be used to speed up the certification of aircraft and make them safer to fly into known icing. The collection features nine sections concentrating on aircraft, rotorcraft, jet engines, UAVs; ice protection systems, including hot-air, electrothermal, and others; sensors and probes, CFD in the aid of testing, flight simulators, and certification process acceleration methods. Incorporating perspectives from academia, commercial, government R&D, the book is ideal for a range of engineers and scientists concerned with in-flight icing applications.




NASA's Contributions to Aeronautics: Flight environment, operations, flight testing, and research


Book Description

Two-volume collection of case studies on aspects of NACA-NASA research by noted engineers, airmen, historians, museum curators, journalists, and independent scholars. Explores various aspects of how NACA-NASA research took aeronautics from the subsonic to the hypersonic era.-publisher description.







We Freeze to Please


Book Description

This is the story of a unique facility that has made unparalleled contributions to a specialized area of aeronautics research that affects virtually all who fly.