Icons of Mathematics: An Exploration of Twenty Key Images


Book Description

The authors present twenty icons of mathematics, that is, geometrical shapes such as the right triangle, the Venn diagram, and the yang and yin symbol and explore mathematical results associated with them. As with their previous books (Charming Proofs, When Less is More, Math Made Visual) proofs are visual whenever possible. The results require no more than high-school mathematics to appreciate and many of them will be new even to experienced readers. Besides theorems and proofs, the book contains many illustrations and it gives connections of the icons to the world outside of mathematics. There are also problems at the end of each chapter, with solutions provided in an appendix. The book could be used by students in courses in problem solving, mathematical reasoning, or mathematics for the liberal arts. It could also be read with pleasure by professional mathematicians, as it was by the members of the Dolciani editorial board, who unanimously recommend its publication.




Discrete Mathematics


Book Description

Note: This is a custom edition of Levin's full Discrete Mathematics text, arranged specifically for use in a discrete math course for future elementary and middle school teachers. (It is NOT a new and updated edition of the main text.)This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this.Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs.While there are many fine discrete math textbooks available, this text has the following advantages: - It is written to be used in an inquiry rich course.- It is written to be used in a course for future math teachers.- It is open source, with low cost print editions and free electronic editions.




Illustrating Mathematics


Book Description

This book is for anyone who wishes to illustrate their mathematical ideas, which in our experience means everyone. It is organized by material, rather than by subject area, and purposefully emphasizes the process of creating things, including discussions of failures that occurred along the way. As a result, the reader can learn from the experiences of those who came before, and will be inspired to create their own illustrations. Topics illustrated within include prime numbers, fractals, the Klein bottle, Borromean rings, tilings, space-filling curves, knot theory, billiards, complex dynamics, algebraic surfaces, groups and prime ideals, the Riemann zeta function, quadratic fields, hyperbolic space, and hyperbolic 3-manifolds. Everyone who opens this book should find a type of mathematics with which they identify. Each contributor explains the mathematics behind their illustration at an accessible level, so that all readers can appreciate the beauty of both the object itself and the mathematics behind it.




A Dingo Ate My Math Book


Book Description

A Dingo Ate My Math Book presents ingenious, unusual, and beautiful nuggets of mathematics with a distinctly Australian flavor. It focuses, for example, on Australians' love of sports and gambling, and on Melbourne's iconic, mathematically inspired architecture. Written in a playful and humorous style, the book offers mathematical entertainment as well as a glimpse of Australian culture for the mathematically curious of all ages. This collection of engaging stories was extracted from the Maths Masters column that ran from 2007 to 2014 in Australia's Age newspaper. The maths masters in question are Burkard Polster and Marty Ross, two (immigrant) Aussie mathematicians, who each week would write about math in the news, providing a new look at old favorites, mathematical history, quirks of school mathematics—whatever took their fancy. All articles were written for a very general audience, with the intention of being as inviting as possible and assuming a minimum of mathematical background.




Comprehensive List of Mathematical Symbols


Book Description

Ever wonder if there's a reference guide out there summarizing most of the symbols used in mathematics, along with contextual examples and LaTeX code so that you can pick up the various topics of mathematics at an unusual speed? Well now there is! In this jam-packed 75-page eBook, the Comprehensive List of Mathematical Symbols will take you through thousands of symbols in 10+ topics and 6 main categories. Each symbol also comes with their own defining examples, LaTeX codes and links to additional resources, making the eBook both a handy reference and a powerful tool for consolidating one's foundation of mathematics. Highlights - Featuring 1000+ of symbols from basic math, algebra, logic, set theory to calculus, analysis, probability and statistics - Comes with LaTeX code, defining contextual examples and links to additional resources - Clear. Concise. Straight-to-the-point with no fluff. - Informative. Engaging. Excellent for shortening the learning/reviewing curve. Table of Contents 1) Constants Key Mathematical Numbers Key Mathematical Sets Key Mathematical Infinities Other Key Mathematical Objects 2) Variables Variables for Numbers Variables in Geometry Variables in Logic Variables in Set Theory Variables in Linear/Abstract Algebra Variables in Probability and Statistics Variables in Calculus 3) Delimiters Common Delimiters Other Delimiters 4) Alphabet Letters Greek Letters Used in Mathematics Other Greek Letters 5) Operators Common Operators Number-related Operators Common Number-based Operators Complex-number-based Operators Function-related Operators Common Function-based Operators Elementary Functions Key Calculus-related Functions and Transforms Other Key Functions Operators in Geometry Operators in Logic Logical Connectives Quantifiers Substitution/Valuation-based Operators Set-related Operators Operators in Algebra Vector-related Operators Matrix-related Operators Vector-space-related Operators Abstract-algebra-related Operators Operators in Probability and Statistics Combinatorial Operators Probability-related Operators Probability-related Functions Discrete Probability Distributions Continuous Probability Distributions and Associated Functions Statistical Operators Operators in Calculus Operators Related to Sequence, Series and Limit Derivative-based Operators Integral-based Operators 6) Relational Symbols Equality-based Relational Symbols Comparison-based Relational Symbols Number-related Relational Symbols Relational Symbols in Geometry Relational Symbols in Logic Set-related Relational Symbols Relational Symbols in Abstract Algebra Relational Symbols in Probability and Statistics Relational Symbols in Calculus 7) Notational Symbols Common Notational Symbols Intervals Notational Symbols in Geometry and Trigonometry Notational Symbols in Probability and Statistics Notational Symbols in Calculus




Mathematical Omnibus


Book Description

The book consists of thirty lectures on diverse topics, covering much of the mathematical landscape rather than focusing on one area. The reader will learn numerous results that often belong to neither the standard undergraduate nor graduate curriculum and will discover connections between classical and contemporary ideas in algebra, combinatorics, geometry, and topology. The reader's effort will be rewarded in seeing the harmony of each subject. The common thread in the selected subjects is their illustration of the unity and beauty of mathematics. Most lectures contain exercises, and solutions or answers are given to selected exercises. A special feature of the book is an abundance of drawings (more than four hundred), artwork by an accomplished artist, and about a hundred portraits of mathematicians. Almost every lecture contains surprises for even the seasoned researcher.




Iconic Arithmetic Volume I


Book Description

Arithmetic evolves. Iconic arithmetic is built from icons that look and feel like what they mean, rather than from strings of symbols that must be memorized. The book explores the formal structure of two types of postsymbolic boundary arithmetic. Ensemble arithmetic modernizes tallies to provide forms that add together by being placed together and multiply by being placed inside one another. James algebra defines the concepts and operations of arithmetic as different ways of arranging containers. Three simple axioms are sufficient. Features of iconic arithmetic include (1) a void with no representation and no properties instead of the symbol zero; (2) void-equivalent forms that can be freely deleted; (3) meaning based on existence of structure rather than truth or numerical value; (4) only one relation (containment) to represent all forms; and (5) construction and deletion to implement all transformations. Iconic forms and transformations can be represented as two and three dimensional structures that can be directly viewed, manipulated, and even inhabited. Many different spatial interactive dialects are described. The author explores this new kind of arithmetic from the perspectives of historical evolution, formal mathematics, computer science and mathematics education. The overall objective is to provide proof of principle that our current universal approach to the arithmetic of numbers is a design choice rather than a truth embedded in numbers themselves. Iconic Arithmetic recognizes that knowledge is embodied, multidimensional, sensual, simple. It helps us to transition into a postsymbolic world of interactive information.




Mathematics++


Book Description

Mathematics++ is a concise introduction to six selected areas of 20th century mathematics providing numerous modern mathematical tools used in contemporary research in computer science, engineering, and other fields. The areas are: measure theory, high-dimensional geometry, Fourier analysis, representations of groups, multivariate polynomials, and topology. For each of the areas, the authors introduce basic notions, examples, and results. The presentation is clear and accessible, stressing intuitive understanding, and it includes carefully selected exercises as an integral part. Theory is complemented by applications--some quite surprising--in theoretical computer science and discrete mathematics. The chapters are independent of one another and can be studied in any order. It is assumed that the reader has gone through the basic mathematics courses. Although the book was conceived while the authors were teaching Ph.D. students in theoretical computer science and discrete mathematics, it will be useful for a much wider audience, such as mathematicians specializing in other areas, mathematics students deciding what specialization to pursue, or experts in engineering or other fields.




Rediscovering Mathematics


Book Description

Rediscovering Mathematics is aimed at a general audience and addresses the question of how best to teach and study mathematics. The book attempts to bring the exciting and dynamic world of mathematics to a non-technical audience. With so much focus today on how best to educate the new generation and make mathematics less rote and more interactive, this book is an eye-opening experience for many people who suffered with dull math teachers and curricula. Rediscovering Mathematics is an eclectic collection of mathematical topics and puzzles aimed at talented youngsters and inquisitive adults who want to expand their view of mathematics. By focusing on problem solving, and discouraging rote memorization, the book shows how to learn and teach mathematics through investigation, experimentation, and discovery. Rediscovering Mathematics is also an excellent text for training math teachers at all levels. Topics range in difficulty and cover a wide range of historical periods, with some examples demonstrating how to uncover mathematics in everyday life, including: number theory and its application to secure communication over the Internet, the algebraic and combinatorial work of a medieval mathematician Rabbi, and applications of probability to sports, casinos, and gambling. Rediscovering Mathematics provides a fresh view of mathematics for those who already like the subject, and offers a second chance for those who think they don't.




Insights into Teaching Mathematics


Book Description

Providing essential guidance and background information about teaching mathematics, this book is intended particularly for teachers who do not regard themselves as specialists in mathematics. It deals with issues of learning and teaching, including the delivery of content and the place of problems and investigations. Difficulties which pupils encounter in connection with language and symbols form important sections of the overall discussion of how to enhance learning. The curriculum is considered in brief under the headings of number, algebra, shape and space, and data handling, and special attention is paid to the topic approach and mathematics across the curriculum. The assessment of mathematical attainment is also dealt with thoroughly. Teachers will find this book an invaluable companion in their day-to-day teaching.