Ideas on the Nature of Science


Book Description

Interviews broadcast on the How to think about science segment of the CBC radio show Ideas.







Teaching About Evolution and the Nature of Science


Book Description

Today many school students are shielded from one of the most important concepts in modern science: evolution. In engaging and conversational style, Teaching About Evolution and the Nature of Science provides a well-structured framework for understanding and teaching evolution. Written for teachers, parents, and community officials as well as scientists and educators, this book describes how evolution reveals both the great diversity and similarity among the Earth's organisms; it explores how scientists approach the question of evolution; and it illustrates the nature of science as a way of knowing about the natural world. In addition, the book provides answers to frequently asked questions to help readers understand many of the issues and misconceptions about evolution. The book includes sample activities for teaching about evolution and the nature of science. For example, the book includes activities that investigate fossil footprints and population growth that teachers of science can use to introduce principles of evolution. Background information, materials, and step-by-step presentations are provided for each activity. In addition, this volume: Presents the evidence for evolution, including how evolution can be observed today. Explains the nature of science through a variety of examples. Describes how science differs from other human endeavors and why evolution is one of the best avenues for helping students understand this distinction. Answers frequently asked questions about evolution. Teaching About Evolution and the Nature of Science builds on the 1996 National Science Education Standards released by the National Research Councilâ€"and offers detailed guidance on how to evaluate and choose instructional materials that support the standards. Comprehensive and practical, this book brings one of today's educational challenges into focus in a balanced and reasoned discussion. It will be of special interest to teachers of science, school administrators, and interested members of the community.




The Unnatural Nature of Science


Book Description

Wolpert draws on the entire history of science, from Thales of Miletus to Watson and Crick, from the study of eugenics to the discovery of the double helix. The result is a scientist's view of the culture of science, authoritative, informed, and mercifully accessible to those who find cohabiting with this culture a puzzling experience.




Reproducibility and Replicability in Science


Book Description

One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.




Reconceptualizing the Nature of Science for Science Education


Book Description

Prompted by the ongoing debate among science educators over ‘nature of science’, and its importance in school and university curricula, this book is a clarion call for a broad re-conceptualizing of nature of science in science education. The authors draw on the ‘family resemblance’ approach popularized by Wittgenstein, defining science as a cognitive-epistemic and social-institutional system whose heterogeneous characteristics and influences should be more thoroughly reflected in science education. They seek wherever possible to clarify their developing thesis with visual tools that illustrate how their ideas can be practically applied in science education. The volume’s holistic representation of science, which includes the aims and values, knowledge, practices, techniques, and methodological rules (as well as science’s social and institutional contexts), mirrors its core aim to synthesize perspectives from the fields of philosophy of science and science education. The authors believe that this more integrated conception of nature of science in science education is both innovative and beneficial. They discuss in detail the implications for curriculum content, pedagogy, and learning outcomes, deploy numerous real-life examples, and detail the links between their ideas and curriculum policy more generally.




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.




Student Thinking and Learning in Science


Book Description

This readable and informative survey of key ideas about students’ thinking in science builds a bridge between theory and practice by offering clear accounts from research, and showing how they relate to actual examples of students talking about widely taught science topics. Focused on secondary students and drawing on perspectives found in the international research literature, the goal is not to offer a comprehensive account of the vast literature, but rather to provide an overview of the current state of the field suitable for those who need an understanding of core thinking about learners’ ideas in science, including science education students in teacher preparation and higher degree programs, and classroom teachers, especially those working with middle school, high school, or college level students. Such understanding can inform and enrich science teaching in ways which are more satisfying for teachers, less confusing and frustrating for learners, and so ultimately can lead to both greater scientific literacy and more positive attitudes to science.




Scientific Inquiry and Nature of Science


Book Description

This book synthesizes current literature and research on scientific inquiry and the nature of science in K-12 instruction. Its presentation of the distinctions and overlaps of inquiry and nature of science as instructional outcomes are unique in contemporary literature. Researchers and teachers will find the text interesting as it carefully explores the subtleties and challenges of designing curriculum and instruction for integrating inquiry and nature of science.




Philosophy of Nature


Book Description

Philosopher, physicist, and anarchist Paul Feyerabend was one of the most unconventional scholars of his time. His book Against Method has become a modern classic. Yet it is not well known that Feyerabend spent many years working on a philosophy of nature that was intended to comprise three volumes covering the period from the earliest traces of stone age cave paintings to the atomic physics of the 20th century – a project that, as he conveyed in a letter to Imre Lakatos, almost drove him nuts: “Damn the ,Naturphilosophie.” The book’s manuscript was long believed to have been lost. Recently, however, a typescript constituting the first volume of the project was unexpectedly discovered at the University of Konstanz. In this volume Feyerabend explores the significance of myths for the early period of natural philosophy, as well as the transition from Homer’s “aggregate universe” to Parmenides’ uniform ontology. He focuses on the rise of rationalism in Greek antiquity, which he considers a disastrous development, and the associated separation of man from nature. Thus Feyerabend explores the prehistory of science in his familiar polemical and extraordinarily learned manner. The volume contains numerous pictures and drawings by Feyerabend himself. It also contains hitherto unpublished biographical material that will help to round up our overall image of one of the most influential radical philosophers of the twentieth century.