2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(


Book Description

Big Data overall architecture consists of three layers data storage, data processing and data analysis Data storage layer stores complex type and mass data, data processing layer realizes real time processing of massive data, and only through data analysis layer, smart, in depth and valuable information are got When talking about big data, it comes to the first is 4V characteristics of big data, namely Volumes, Variety, Velocity, Veracity Big data processing key technology generally includes data acquisition, data preprocessing, data storage and data management, data analysis and mining, big show and application (big data retrieval, data visualization, big data applications, data security, etc ) In recent years, Big Data has become a new ubiquitous term Big Data is transforming science, engineering, medicine, healthcare, finance, business, and ultimately society itself 2017 2nd IEEE International Conference on Big Data Analysis (ICBDA 2017) provides a leading forum for diss




Learning-Based Control


Book Description

The recent success of Reinforcement Learning and related methods can be attributed to several key factors. First, it is driven by reward signals obtained through the interaction with the environment. Second, it is closely related to the human learning behavior. Third, it has a solid mathematical foundation. Nonetheless, conventional Reinforcement Learning theory exhibits some shortcomings particularly in a continuous environment or in considering the stability and robustness of the controlled process. In this monograph, the authors build on Reinforcement Learning to present a learning-based approach for controlling dynamical systems from real-time data and review some major developments in this relatively young field. In doing so the authors develop a framework for learning-based control theory that shows how to learn directly suboptimal controllers from input-output data. There are three main challenges on the development of learning-based control. First, there is a need to generalize existing recursive methods. Second, as a fundamental difference between learning-based control and Reinforcement Learning, stability and robustness are important issues that must be addressed for the safety-critical engineering systems such as self-driving cars. Third, data efficiency of Reinforcement Learning algorithms need be addressed for safety-critical engineering systems. This monograph provides the reader with an accessible primer on a new direction in control theory still in its infancy, namely Learning-Based Control Theory, that is closely tied to the literature of safe Reinforcement Learning and Adaptive Dynamic Programming.




2017 IEEE 12th International Conference on ASIC (ASICON)


Book Description

Process & Device Technologies 1 VLSI Design & Circuits 2 Analog, Mixed Signal and RF Circuits 3 Application Specific SOCs 4 Circuits and Systems for Wireless Communications 5 Testing, Reliability, Fault Tolerance 6 Advanced Memory 7 FPGA 8 Circuits Simulation, Synthesis, Varification and Physical Design 9 CAD for System, DFM & Testing 10 MEMS Techniques 11 Nanoelectronics and Gigascale Systems 12 New Devices Hetrojunction Devices, Fin FET, CNT MTJ Devices, 3D Integration, etc 13 Advanced Interconnection Technology, High K Metal gate technology and other VLSI New Processing, New technologies 14 VLSI application for energy generation, conservation and control 15 Processing, Devices Modeling & Simulation 16 Other VLSI Devices and Design related topics




Neural Networks


Book Description

Neural networks are a computing paradigm that is finding increasing attention among computer scientists. In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets. Always with a view to biology and starting with the simplest nets, it is shown how the properties of models change when more general computing elements and net topologies are introduced. Each chapter contains examples, numerous illustrations, and a bibliography. The book is aimed at readers who seek an overview of the field or who wish to deepen their knowledge. It is suitable as a basis for university courses in neurocomputing.




Complex-Valued Neural Networks


Book Description

Presents the latest advances in complex-valued neural networks by demonstrating the theory in a wide range of applications Complex-valued neural networks is a rapidly developing neural network framework that utilizes complex arithmetic, exhibiting specific characteristics in its learning, self-organizing, and processing dynamics. They are highly suitable for processing complex amplitude, composed of amplitude and phase, which is one of the core concepts in physical systems to deal with electromagnetic, light, sonic/ultrasonic waves as well as quantum waves, namely, electron and superconducting waves. This fact is a critical advantage in practical applications in diverse fields of engineering, where signals are routinely analyzed and processed in time/space, frequency, and phase domains. Complex-Valued Neural Networks: Advances and Applications covers cutting-edge topics and applications surrounding this timely subject. Demonstrating advanced theories with a wide range of applications, including communication systems, image processing systems, and brain-computer interfaces, this text offers comprehensive coverage of: Conventional complex-valued neural networks Quaternionic neural networks Clifford-algebraic neural networks Presented by international experts in the field, Complex-Valued Neural Networks: Advances and Applications is ideal for advanced-level computational intelligence theorists, electromagnetic theorists, and mathematicians interested in computational intelligence, artificial intelligence, machine learning theories, and algorithms.







Fundamentals of Artificial Neural Networks


Book Description

A systematic account of artificial neural network paradigms that identifies fundamental concepts and major methodologies. Important results are integrated into the text in order to explain a wide range of existing empirical observations and commonly used heuristics.







Advances in Neural Networks -- ISNN 2011


Book Description

The three-volume set LNCS 6675, 6676 and 6677 constitutes the refereed proceedings of the 8th International Symposium on Neural Networks, ISNN 2011, held in Guilin, China, in May/June 2011. The total of 215 papers presented in all three volumes were carefully reviewed and selected from 651 submissions. The contributions are structured in topical sections on computational neuroscience and cognitive science; neurodynamics and complex systems; stability and convergence analysis; neural network models; supervised learning and unsupervised learning; kernel methods and support vector machines; mixture models and clustering; visual perception and pattern recognition; motion, tracking and object recognition; natural scene analysis and speech recognition; neuromorphic hardware, fuzzy neural networks and robotics; multi-agent systems and adaptive dynamic programming; reinforcement learning and decision making; action and motor control; adaptive and hybrid intelligent systems; neuroinformatics and bioinformatics; information retrieval; data mining and knowledge discovery; and natural language processing.




Neural Network Analysis, Architectures and Applications


Book Description

Neural Network Analysis, Architectures and Applications discusses the main areas of neural networks, with each authoritative chapter covering the latest information from different perspectives. Divided into three parts, the book first lays the groundwork for understanding and simplifying networks. It then describes novel architectures and algorithms, including pulse-stream techniques, cellular neural networks, and multiversion neural computing. The book concludes by examining various neural network applications, such as neuron-fuzzy control systems and image compression. This final part of the book also provides a case study involving oil spill detection. This book is invaluable for students and practitioners who have a basic understanding of neural computing yet want to broaden and deepen their knowledge of the field.




Recent Books