Smart Grid Standards


Book Description

A fully comprehensive introduction to smart grid standardsand their applications for developers, consumers and serviceproviders The critical role of standards for smart grid has already beenrealized by world-wide governments and industrial organizations.There are hundreds of standards for Smart Grid which have beendeveloped in parallel by different organizations. It istherefore necessary to arrange those standards in such a way thatit is easier for readers to easily understand and select aparticular standard according to their requirements without goinginto the depth of each standard, which often spans from hundreds tothousands of pages. The book will allow people in the smart grid areas and in therelated industries to easily understand the fundamental standardsof smart grid, and quickly find the building-block standards theyneed from hundreds of standards for implementing a smart gridsystem. The authors highlight the most advanced works and effortsnow under way to realize an integrated and interoperable smartgrid, such as the “NIST Framework and Roadmap for Smart GridInteroperability Standards Release 2.0”, the” IEC SmartGrid Standardization Roadmap”, the ISO/IEC’s“Smart Grid Standards for Residential Customers”, theZigBee/HomePlug’s “Smart Energy Profile Specification2.0”, IEEE’s P2030 “Draft Guide for Smart GridInteroperability of Energy Technology and Information TechnologyOperation with the Electric Power System (EPS), and End-UseApplications and Loads”, and the latest joint researchproject results between the world’s two largest economies, USand China. The book enables readers to fully understand the latestachievements and ongoing technical works of smart grid standards,and assist industry utilities, vendors, academia, regulators, andother smart grid stakeholders in future decision making. The book begins with an overview of the smart grid, andintroduces the opportunities in both developed and developingcountries. It then examines the standards for power griddomain of the smart grid, including standards for blackoutprevention and energy management, smart transmission, advanceddistribution management and automation, smart substationautomation, and condition monitoring. Communication and securitystandards as a whole are the backbone of smart grid and theirstandards, including those for wired and wireless communications,are then assessed. Finally the authors consider the standards andon-going work and efforts for interoperability and integrationbetween different standards and networks, including the latestjoint research effort between the world’s two largesteconomies, US and China. A fully comprehensive introduction to smart grid standards andtheir applications for developers, consumers and serviceproviders Covers all up-to-date standards of smart grid, including thekey standards from NIST, IEC, ISO ZigBee, IEEE, HomePlug, SAE, andother international and regional standardization organizations. TheAppendix summarizes all of the standards mentioned in the book Presents standards for renewable energy and smart generation,covering wind energy, solar voltaic, fuel cells, pumped storage,distributed generation, and nuclear generation standards. Standardsfor other alternative sources of energy such as geothermal energy,and bioenergy are briefly introduced Introduces the standards for smart storage and plug-in electricvehicles, including standards for distributed energy resources(DER), electric storage, and E-mobility/plug-in vehicles The book is written in an accessible style, ideal as anintroduction to the topic, yet contains sufficient detail andresearch to appeal to the more advanced and specialist reader.




Modeling and Control of Sustainable Power Systems


Book Description

The concept of the smart grid promises the world an efficient and intelligent approach of managing energy production, transportation, and consumption by incorporating intelligence, efficiency, and optimality into the power grid. Both energy providers and consumers can take advantage of the convenience, reliability, and energy savings achieved by real-time and intelligent energy management. To this end, the current power grid is experiencing drastic changes and upgrades. For instance, more significant green energy resources such as wind power and solar power are being integrated into the power grid, and higher energy storage capacity is being installed in order to mitigate the intermittency issues brought about by the variable energy resources. At the same time, novel power electronics technologies and operating strategies are being invented and adopted. For instance, Flexible AC transmission systems and phasor measurement units are two promising technologies for improving the power system reliability and power quality. Demand side management will enable the customers to manage the power loads in an active fashion. As a result, modeling and control of modern power grids pose great challenges due to the adoption of new smart grid technologies. In this book, chapters regarding representative applications of smart grid technologies written by world-renowned experts are included, which explain in detail various innovative modeling and control methods.







Power Electronics Handbook


Book Description

Power Electronics Handbook, Fifth Edition delivers an expert guide to power electronics and their applications. The book examines the foundations of power electronics, power semiconductor devices, and power converters, before reviewing a constellation of modern applications. Comprehensively updated throughout, this new edition features new sections addressing current practices for renewable energy storage, transmission, integration, and operation, as well as smart-grid security, intelligent energy, artificial intelligence, and machine learning applications applied to power electronics, and autonomous and electric vehicles. This handbook is aimed at practitioners and researchers undertaking projects requiring specialist design, analysis, installation, commissioning, and maintenance services. - Provides a fully comprehensive work addressing each aspect of power electronics in painstaking depth - Delivers a methodical technical presentation in over 1500 pages - Includes 50+ contributions prepared by leading experts - Offers practical support and guidance with detailed examples and applications for lab and field experimentation - Includes new technical sections on smart-grid security and intelligent energy, artificial intelligence, and machine learning applications applied to power electronics and autonomous and electric vehicles - Features new chapter level templates and a narrative progression to facilitate understanding




Electric Distribution Systems


Book Description

This book provides a comprehensive treatment of electric distribution systems. Few books cover specific topics in more depth and there is hardly any book that deals with the key topics of interest to distribution system engineers. The book introduces these topics from two points of view: 1) The practical point of view by providing practical examples and the problems which can be solved. 2) The academic point of view where the analysis and various techniques used for distribution system planning are explained. The most outstanding feature of this book is a combination of practical and academic explanation of its contents. Another outstanding feature is a collection of the traditional and current topics of distribution systems condensed into one book. The reader will gain an understanding of distribution systems from both practical and academic aspects, will be able to outline and design a distribution system for specific loads, cities, zones, etc.. Readers will also be able to recognize the problems which may occur during the operation of distribution systems and be able to propose solutions for these problems.




Smart Energy Grid Design for Island Countries


Book Description

This book identifies the challenges, solutions, and opportunities offered by smart energy grids (SEGs) with regard to the storage and regulation of diversified energy sources such as photovoltaic, wind, and ocean energy. It provides a detailed analysis of the stability and availability of renewable sources, and assesses relevant socioeconomic structures. The book also presents case studies to maximize readers’ understanding of energy grid management and optimization. Moreover, it offers guidelines on the design, implementation, and maintenance of the (SEG) for island countries.




Control and Filter Design of Single-Phase Grid-Connected Converters


Book Description

Control and Filter Design of Single-Phase Grid-Connected Converters A state-of-the-art discussion of modern grid inverters In Control and Filter Design of Single-Phase Grid-Connected Converters, a team of distinguished researchers deliver a robust and authoritative treatment of critical distributed power generation technologies, grid-connected inverter designs, and renewable energy utilization. The book includes detailed explanations of the system structure of distributed generation (DG)-grid interface converters and the methods of controlling DG-grid interface voltage source converters (VSCs) with high-order filters. The authors also explore the challenges and obstacles associated with modern power electronic grid-connected inverter control technology and introduce some designed systems that meet these challenges, such as the grid impedance canceller. Readers will discover demonstrations of basic principles, guidelines, examples, and design and simulation programs for grid-connected inverters based on LCL/LLCL technology. They will also find: A thorough introduction to the architectures of DG-grid interfacing converters, including the challenges of controlling DG-grid interfacing VSCs with high-order filters Comprehensive explorations of the control structure and modulation techniques of single-phase grid-tied inverters Practical discussions of an LLCL power filter for single-phase grid-tied inverters Fulsome treatments of design methods of passive damping for LCL/LLCL-filtered grid-tied inverters Perfect for researchers, postgraduate students, and senior level undergraduate students of electrical engineering, Control and Filter Design of Single-Phase Grid-Connected Converters will also benefit research & development engineers involved with the design and manufacture of power electronic inverters.




Grid Converters for Photovoltaic and Wind Power Systems


Book Description

Grid converters are the key player in renewable energy integration. The high penetration of renewable energy systems is calling for new more stringent grid requirements. As a consequence, the grid converters should be able to exhibit advanced functions like: dynamic control of active and reactive power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: modern grid inverter topologies for photovoltaic and wind turbines islanding detection methods for photovoltaic systems synchronization techniques based on second order generalized integrators (SOGI) advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active damping techniques power control under grid fault conditions, considering both positive and negative sequences Grid Converters for Photovoltaic and Wind Power Systems is intended as a coursebook for graduated students with a background in electrical engineering and also for professionals in the evolving renewable energy industry. For people from academia interested in adopting the course, a set of slides is available for download from the website. www.wiley.com/go/grid_converters







Microgrid Cyberphysical Systems


Book Description

Microgrid Cyberphysical Systems: Renewable Energy and Plug-in Vehicle Integration outlines the fundamental concepts on microgrid system design and control in a cyberphysical framework, focusing on the integration of renewables and EVs into microgrids. Including operational, control and management perspectives, the volume aims to optimize the reliability and economic performance of microgrids, focusing on power quality, storage and voltage and frequency control. The work encompasses generation, transmission, protection and load management under uncertainty and discusses critical drivers in robustness, uncertainty and sustainability management. Focusing on applied implementations, chapters are supported by detailed methods, heavy figurative explication, and comparative and integrative analysis. Case studies range across chapters. In addition, chapters are supported by representative experimental or test bed validations of proposed algorithms or methods which can be directly applied to reader problems. - Provides advanced controller methodologies to efficiently optimize the operation of microgrids with high levels of connected renewable generators and electric vehicles - Explores powerful approaches for the prevention of cyberattacks in microgrid systems - Addresses design issues for power quality filters suitable for microgrid robustness, uncertainty and sustainability handling - Includes field-tested methods, heavy case studies and an implementation focus with supporting experimental or test bed validations of proposed algorithms or methods in MATLAB