Fault Detection, Supervision and Safety of Technical Processes 2003 (SAFEPROCESS 2003)


Book Description

A three-volume work bringing together papers presented at 'SAFEPROCESS 2003', including four plenary papers on statistical, physical-model-based and logical-model-based approaches to fault detection and diagnosis, as well as 178 regular papers.




Fault Detection, Supervision and Safety of Technical Processes 2006


Book Description

The safe and reliable operation of technical systems is of great significance for the protection of human life and health, the environment, and of the vested economic value. The correct functioning of those systems has a profound impact also on production cost and product quality. The early detection of faults is critical in avoiding performance degradation and damage to the machinery or human life. Accurate diagnosis then helps to make the right decisions on emergency actions and repairs. Fault detection and diagnosis (FDD) has developed into a major area of research, at the intersection of systems and control engineering, artificial intelligence, applied mathematics and statistics, and such application fields as chemical, electrical, mechanical and aerospace engineering. IFAC has recognized the significance of FDD by launching a triennial symposium series dedicated to the subject. The SAFEPROCESS Symposium is organized every three years since the first symposium held in Baden-Baden in 1991. SAFEPROCESS 2006, the 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes was held in Beijing, PR China. The program included three plenary papers, two semi-plenary papers, two industrial talks by internationally recognized experts and 258 regular papers, which have been selected out of a total of 387 regular and invited papers submitted. * Discusses the developments and future challenges in all aspects of fault diagnosis and fault tolerant control * 8 invited and 36 contributed sessions included with a special session on the demonstration of process monitoring and diagnostic software tools







Test Signal Generation for Service Diagnosis Based on Local Structure Graphs


Book Description

This work considers the problem of identifying the fault in a faulty dynamical system on the basis of the system's input and output signals only. For this purpose, a model-based method for the design of diagnostic tests which consist of specific input signals and appropriate residual generators is developed. The method extends the structure graph of dynamical systems in order to represent the couplings in a system which has been brought to a specific operating region. The resulting local structure graph is used to determine specific residual generators which can distinguish between faults on the basis of the system's input and output signals in the corresponding operating region. Algorithms to determine advantageous operating regions and input signals which drive the system into such operating regions are given. The application of the method to determine diagnostic tests is demonstrated using a typical automotive system, a throttle valve.




Self-Healing Systems and Wireless Networks Management


Book Description

Do you believe in open-source development? Would you like to see your security system grow and learn by itself? Are you sick of paying for software license fees every year that produce little return on investment? And, would you prefer to invest in something you could sell later on to other IT security departments? If you answered yes to these questions, then this is the book for you. Addressing the issues of fault identification and classification, Self-Healing Systems and Wireless Networks Management presents a method for identifying and classifying faults using causal reasoning—a powerful bottom up technique for deep surface and cross context correlation establishment. It explains how to employ a similarity matrix to match the user activity log and its pattern in a transformed space and discusses the development and deployment of a policy engine. The book describes how to use this self-growing policy engine in collaboration with a scheduler and plug-in bank to generate a healing policy. This healing policy presents the solution of the direct and causal fault. The author describes how to embed the solutions of the related faults in the healing policy so that if a client faces more faults related to the previous one, they can be addressed at the client side. Exploring prototype systems, the text defines supporting systems architectures and includes a case study of an autonomic healing-based self-management engine. It also explains how to fulfill the tasks in linear time, so that the increase in the source file size does not affect the performance of your system—making the system highly scalable for distributed self-healing systems. This book provides valuable guidance to help you build a self-growing, self -earning, self-healing system that, after development, learns for itself about the IT security vulnerabilities of your organization and fills the holes for future breach prevention.







Fault-tolerant Control Systems


Book Description

The seriesAdvancesinIndustrialControl aims to report and encourage te- nologytransfer in controlengineering. The rapid development of controlte- nology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies. . . , new challenges. Much of this devel- ment work resides in industrial reports, feasibility study papers, and the - ports of advanced collaborative projects. The series o?ers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Control system design and technology continues to develop in many d- ferent directions. One theme that the Advances in Industrial Control series is following is the application of nonlinear control design methods, and the series has some interesting new commissions in progress. However, another theme of interest is how to endow the industrial controller with the ability to overcome faults and process degradation. Fault detection and isolation is a broad ?eld with a research literature spanning several decades. This topic deals with three questions: • How is the presence of a fault detected? • What is the cause of the fault? • Where is it located? However, there has been less focus on the question of how to use the control system to accommodate and overcome the performance deterioration caused by the identi?ed sensor or actuator fault.




PROCESS INSTRUMENTATION, CONTROL AND AUTOMATION - Volume I


Book Description

Process Instrumentation, Control and Automation is a component of Encyclopedia of Water Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The volume presents state-of-the art subject matter of various aspects of Process Instrumentation, Control and Automation such as: Availability Analysis Of MSF distillers Using Fault Tree Logic; Control Schemes Of Cogenerating Power Plants For Desalination; Fault Diagnosis Using Artificial Intelligence In Thermal Desalination Systems; Fault Diagnosis In Chemical Processes, Its Relation To Thermal Desalination Systems; Introduction To Process Control; Fundamentals Of Control Theory; Process Control Systems; Control Valves Actuators; Control Valve Positioners; Automation And Control Of Thermal Processes; Automation And Control Of Electric Power Generation And Distribution Systems: Steam Turbines; Combined Cycle And Combined Heat And Power Processes; Fault Detection And Diagnostics Of Failures. This volume is aimed at the following five major target audiences: University and College Students Educators, Professional Practitioners, Research Personnel and Policy and Decision Makers




Fault Diagnosis of Dynamic Systems


Book Description

Fault Diagnosis of Dynamic Systems provides readers with a glimpse into the fundamental issues and techniques of fault diagnosis used by Automatic Control (FDI) and Artificial Intelligence (DX) research communities. The book reviews the standard techniques and approaches widely used in both communities. It also contains benchmark examples and case studies that demonstrate how the same problem can be solved using the presented approaches. The book also introduces advanced fault diagnosis approaches that are currently still being researched, including methods for non-linear, hybrid, discrete-event and software/business systems, as well as, an introduction to prognosis. Fault Diagnosis of Dynamic Systems is valuable source of information for researchers and engineers starting to work on fault diagnosis and willing to have a reference guide on the main concepts and standard approaches on fault diagnosis. Readers with experience on one of the two main communities will also find it useful to learn the fundamental concepts of the other community and the synergies between them. The book is also open to researchers or academics who are already familiar with the standard approaches, since they will find a collection of advanced approaches with more specific and advanced topics or with application to different domains. Finally, engineers and researchers looking for transferable fault diagnosis methods will also find useful insights in the book.




Real-time Monitoring and Operational Control of Drinking-Water Systems


Book Description

This book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees. The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain. The proposed approaches and tools cover: • decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow and pressure actuators—pumping stations and pressure regulation valves— and intermediate storage tanks to be operated to meet demand using the most sustainable types of source and with minimum electricity costs;• decision-making support for monitoring water balance and distribution network quality in real time, implementing fault detection and diagnosis techniques and using information from hundreds of flow, pressure, and water-quality sensors together with hydraulic and quality-parameter-evolution models to detect and locate leaks in the network, possible breaches in water quality, and failures in sensors and/or actuators;• consumer-demand prediction, based on smart metering techniques, producing detailed analyses and forecasts of consumption patterns, providing a customer communications service, and suggesting economic measures intended to promote more efficient use of water at the household level. Researchers and engineers working with drinking-water networks will find this a vital support in overcoming the problems associated with increased population, environmental sensitivities and regulation, aging infrastructures, energy requirements, and limited water sources.