Illustrated Glossary for Solar and Solar-Terrestrial Physics


Book Description

At the XV. General Assembly of the International Astronomical Union in Sydney 1973, Commission 10 for Solar Activity requested the incoming Organising Committee to establish a small group to recommend a standard nomenclature for solar features and to prepare an illustrated text which would clear the jungle of terms for the benefit of solar physicists as well as of theoreticians and research workers in related fields. The challenge was taken up by the president of Commission 10, Prof. K. O. Kiepenheuer, and his persuasive advocacy has led eventually to the present book. In the course of the work, the declared aim but not the basic purpose was revised. Rather than prepare a list of standard terms, we have preferred to collect together all the terms that appear in current English-language literature. Synonyms and partially overlapping terms are all recorded for the most part without prejudice. Each has been defined as exactly as possible with the hope that in the future they may be used and understood without ambiguity. It would be a step on the road to standardisation if these terms were not re-used for new phenomena. New observations and new theories will lead to reappraisals and redefinitions so the Glossary is intended more as a guide to the present situation than as a rule-book.







Solar-Terrestrial Magnetic Activity and Space Environment


Book Description

The COSPAR Colloquium on Solar-Terrestrial Magnetic Activity and Space Environment (STMASE) was held in the National Astronomy Observatories of Chinese Academy of Sciences (NAOC) in Beijing, China in September 10-12, 2001. The meeting was focused on five areas of the solar-terrestrial magnetic activity and space environment studies, including study on solar surface magnetism; solar magnetic activity, dynamical response of the heliosphere; space weather prediction; and space environment exploration and monitoring. A hot topic of space research, CMEs, which are widely believed to be the most important phenomenon of the space environment, is discussed in many papers. Other papers show results of observational and theoretical studies toward better understanding of the complicated image of the magnetic coupling between the Sun and the Earth, although little is still known little its physical background. Space weather prediction, which is very important for a modern society expanding into out-space, is another hot topic of space research. However, a long way is still to go to predict exactly when and where a disaster will happen in the space. In that sense, there is much to do for space environment exploration and monitoring. The manuscripts submitted to this Monograph are divided into the following parts: (1) solar surface magnetism, (2) solar magnetic activity, (3) dynamical response of the heliosphere, (4) space environment exploration and monitoring; and (5) space weather prediction. Papers presented in this meeting but not submitted to this Monograph are listed by title as unpublished papers at the end of this book.




The Coronas-F Space Mission


Book Description

This volume is the updated and extended translation of the Russian original. It presents the results of observations of solar activity and its effects in the Earth space environment carried out from July 2001 to December 2005 on board the CORONAS-F space mission. The general characteristics of the CORONAS-F scientific payload are provided with a description of the principal experiments. The main results focus on the global oscillations of the Sun (p-modes), solar corona, solar flares, solar cosmic rays, Earth’s radiation belts, and upper atmosphere. The book will be welcomed by students, post-graduates, and scientists working in the field of solar and solar-terrestrial physics. This English edition is supplemented by sections presenting new results of the SPIRIT and TESIS experiments under the CORONAS solar program, as well as from the SONG experiment onboard the CORONAS-F satellite.




Physics of the Solar Corona


Book Description

A thorough introduction to solar physics based on recent spacecraft observations. The author introduces the solar corona and sets it in the context of basic plasma physics before moving on to discuss plasma instabilities and plasma heating processes. The latest results on coronal heating and radiation are presented. Spectacular phenomena such as solar flares and coronal mass ejections are described in detail, together with their potential effects on the Earth.




Infrared Solar Physics


Book Description

Infrared Solar Physics contains the proceedings of the 154th Symposium of the International Astronomical Union held in Tucson, Arizona, March 2--5, 1992. Aimed at active workers and graduate students in solar physics, this volume provides the first comprehensive view of a rapidly expanding discipline that gives us a new perspective on the sun. Measurements across the wide infrared spectral range -- here, from 1 mum to 1 mm -- can probe the solar atmosphere from below the visible surface through the outer reaches of the corona. Taking full advantage of revolutionary advances in detector technology, infrared observations from the ground, aircraft and space have led to a better understanding of solar magnetic fields, atmospheric structure and activity, and elemental abundances. The infrared has also provided new interpretive challenges, such as the appearance of the 12-mum emission lines of magnesium. These and other developments are discussed here by the leading contributors to the field, who also give their perspectives on the future of this rich field of study.




Literature 1977, Part 2


Book Description

Astronomy and Astrophysics Abstracts, which has appeared in semi-annual volumes since 1969, is de voted to the recording, summarizing and indexing of astronomical publications throughout the world. It is prepared under the auspices of the International Astronomical Union (according to a resolution adopted at the 14th General Assembly in 1970). Astronomy and Astrophysics Abstracts aims to present a comprehensive documentation of literature in all fields of astronomy and astrophysics. Every effort will be made to ensure that the average time interval between the date of receipt of the original literature and publication of the abstracts will not exceed eight months. This time interval is near to that achieved by monthly abstracting journals, com pared to which our system of accumulating abstracts for about six months offers the advantage of greater convenience for the user. Volume 20 contains literature published in 1977 and received before February 20, 1978; some older literature which was received late and which is not recorded in earlier volumes is also included. We acknowledge with thanks contributions to this volume by Dr. J. BouSka, Prague, who surveyed journals and publications in Czech and supplied us with abstracts in English, and by Prof. P. Brosche, Bonn, who supplied us with literature concerning some border fields of astronomy.




The Dynamic Sun


Book Description

Our Sun is the nearest star and thus an ideal laboratory to study dynamic processes which are related to solar terrestrial physics. The topics addressed in this book cover solar MHD and generation of acoustic waves, as well as physical parameters that are suited to describing solar activity and could serve as proxies for space weather forecasting. The influence of solar activity (radiation and solar wind) on telecommunication systems, satellite missions etc. is also discussed. In short, contribution reports are given on various topics in solar physics. The book covers solar physics from the photosphere to space weather influences. The intended level of readership is aimed at students working in this or related fields, professionals, and astronomers who wish to acquire some basic knowledge in the field of solar terrestrial relations, which is provided in the review articles.




Solar Magnetohydrodynamics


Book Description

I have felt the need for a book on the theory of solar magnetic fields for some time now. Most books about the Sun are written by observers or by theorists from other branches of solar physics, whereas those on magnetohydrodynamics do not deal extensively with solar applications. I had thought of waiting a few decades before attempting to put pen to paper, but one summer Josip Kleczek encouraged an im mediate start 'while your ideas are still fresh'. The book grew out of a postgraduate lecture course at St Andrews, and the resulting period of gestation or 'being with monograph' has lasted several years. The Sun is an amazing object, which has continued to reveal completely unexpected features when observed in greater detail or at new wavelengths. What riches would be in store for us if we could view other stars with as much precision! Stellar physics itself is benefiting greatly from solar discoveries, but, in tum, our understanding of many solar phenomena (such as sunspots, sunspot cycles, the corona and the solar wind) will undoubtedly increase in the future due to their observation under different conditions in other stars. In the 'old days' the solar atmosphere was regarded as a static, plane-parallel structure, heated by the dissipation of sound waves and with its upper layer expanding in a spherically symmetric manner as the solar wind. Outside of sunspots the magnetic field was thOUght to be unimportant with a weak uniform value of a few gauss.




Theoretical and Observational Problems Related to Solar Eclipses


Book Description

The NATO ARW on the problems of ground-based observations of Solar Eclipses was held in Sinaia (Romania) between 1 and 5 June 1996. The Workshop was divided into seven sessions, in which 17 papers were given, by key speakers, along with 30 oral presentations. Additionally, 30 posters were presented. This issue contains only the invited and oral papers. The posters are to be published in a special issue of the Romanian Astronomical Journal. The contributions were based on our present knowledge of solar corona physics and on the perspectives for future total eclipse observations, focussing especially on that of August 11, 1999, which will be the last eclipse of the century. The workshop sessions reviewed the results of past eclipse observations, coronal hot and cold structures, coronal heating, public education, and instrumental problems. At the end of the meeting a fruitful general discussion drew out problems to be studied and techniques to be used for forthcoming observations. Posters completed the workshop contributions.