Image Points and Riemann's Theorem
Author : Francis Joseph Gerst
Publisher :
Page : 56 pages
File Size : 35,87 MB
Release : 1925
Category : Functions
ISBN :
Author : Francis Joseph Gerst
Publisher :
Page : 56 pages
File Size : 35,87 MB
Release : 1925
Category : Functions
ISBN :
Author : Lars Valerian Ahlfors
Publisher : Princeton University Press
Page : 264 pages
File Size : 29,36 MB
Release : 1953-08-01
Category : Mathematics
ISBN : 1400828376
The description for this book, Contributions to the Theory of Riemann Surfaces. (AM-30), Volume 30, will be forthcoming.
Author : Rick Miranda
Publisher : American Mathematical Soc.
Page : 414 pages
File Size : 13,85 MB
Release : 1995
Category : Mathematics
ISBN : 0821802682
In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.
Author : Arnold Sommerfeld
Publisher : Springer Science & Business Media
Page : 162 pages
File Size : 24,2 MB
Release : 2012-12-06
Category : Mathematics
ISBN : 0817681965
A. Sommerfeld's "Mathematische Theorie der Diffraction" marks a milestone in optical theory, full of insights that are still relevant today. In a stunning tour de force, Sommerfeld derives the first mathematically rigorous solution of an optical diffraction problem. Indeed, his diffraction analysis is a surprisingly rich and complex mix of pure and applied mathematics, and his often-cited diffraction solution is presented only as an application of a much more general set of mathematical results. This complete translation, reflecting substantial scholarship, is the first publication in English of Sommerfeld's original work. The extensive notes by the translators are rich in historical background and provide many technical details for the reader.
Author : Robert Brooks
Publisher : American Mathematical Soc.
Page : 298 pages
File Size : 42,16 MB
Release : 2005
Category : Mathematics
ISBN : 0821837109
This volume contains articles based on talks given at the Robert Brooks Memorial Conference on Geometry and Spectral Theory and the Workshop on Groups, Geometry and Dynamics held at Technion - the Israel Institute of Technology (Haifa). Robert Brooks' (1952 - 2002) broad range of mathematical interests is represented in the volume, which is devoted to various aspects of global analysis, spectral theory, the theory of Riemann surfaces, Riemannian and discrete geometry, and numbertheory. A survey of Brooks' work has been written by his close colleague, Peter Buser. Also included in the volume are articles on analytic topics, such as Szego's theorem, and on geometric topics, such as isoperimetric inequalities and symmetries of manifolds. The book is suitable for graduate studentsand researchers interested in various aspects of geometry and global analysis.
Author :
Publisher : Academic Press
Page : 433 pages
File Size : 48,75 MB
Release : 2014-05-14
Category : Mathematics
ISBN : 0080873405
Complex Function Theory
Author : Brian Hatfield
Publisher : CRC Press
Page : 753 pages
File Size : 20,57 MB
Release : 2018-03-09
Category : Science
ISBN : 0429961782
First Published in 2018. The emphasis of the book is calculational, and most computations are presented in step-by-step detail. The book is unique in that it develops all three representations of quantum field theory (operator, functional Schr dinger, and path integral) for point particles and strings. In many cases, identical results are worked out in each representation to emphasize the representation-independent structures of quantum field theory
Author : Athanase Papadopoulos
Publisher : European Mathematical Society
Page : 812 pages
File Size : 17,89 MB
Release : 2007
Category : Mathematics
ISBN : 9783037190296
The Teichmuller space of a surface was introduced by O. Teichmuller in the 1930s. It is a basic tool in the study of Riemann's moduli spaces and the mapping class groups. These objects are fundamental in several fields of mathematics, including algebraic geometry, number theory, topology, geometry, and dynamics. The original setting of Teichmuller theory is complex analysis. The work of Thurston in the 1970s brought techniques of hyperbolic geometry to the study of Teichmuller space and its asymptotic geometry. Teichmuller spaces are also studied from the point of view of the representation theory of the fundamental group of the surface in a Lie group $G$, most notably $G=\mathrm{PSL}(2,\mathbb{R})$ and $G=\mathrm{PSL}(2,\mathbb{C})$. In the 1980s, there evolved an essentially combinatorial treatment of the Teichmuller and moduli spaces involving techniques and ideas from high-energy physics, namely from string theory. The current research interests include the quantization of Teichmuller space, the Weil-Petersson symplectic and Poisson geometry of this space as well as gauge-theoretic extensions of these structures. The quantization theories can lead to new invariants of hyperbolic 3-manifolds. The purpose of this handbook is to give a panorama of some of the most important aspects of Teichmuller theory. The handbook should be useful to specialists in the field, to graduate students, and more generally to mathematicians who want to learn about the subject. All the chapters are self-contained and have a pedagogical character. They are written by leading experts in the subject.
Author : James F. Peters
Publisher : Springer Nature
Page : 455 pages
File Size : 21,33 MB
Release : 2019-10-03
Category : Technology & Engineering
ISBN : 303022192X
This book discusses the computational geometry, topology and physics of digital images and video frame sequences. This trio of computational approaches encompasses the study of shape complexes, optical vortex nerves and proximities embedded in triangulated video frames and single images, while computational geometry focuses on the geometric structures that infuse triangulated visual scenes. The book first addresses the topology of cellular complexes to provide a basis for an introductory study of the computational topology of visual scenes, exploring the fabric, shapes and structures typically found in visual scenes. The book then examines the inherent geometry and topology of visual scenes, and the fine structure of light and light caustics of visual scenes, which bring into play catastrophe theory and the appearance of light caustic folds and cusps. Following on from this, the book introduces optical vortex nerves in triangulated digital images. In this context, computational physics is synonymous with the study of the fine structure of light choreographed in video frames. This choreography appears as a sequence of snapshots of light reflected and refracted from surface shapes, providing a solid foundation for detecting, analyzing and classifying visual scene shapes.
Author : Joseph Bak
Publisher : Springer Science & Business Media
Page : 332 pages
File Size : 30,24 MB
Release : 2010-08-02
Category : Mathematics
ISBN : 1441972889
This unusual and lively textbook offers a clear and intuitive approach to the classical and beautiful theory of complex variables. With very little dependence on advanced concepts from several-variable calculus and topology, the text focuses on the authentic complex-variable ideas and techniques. Accessible to students at their early stages of mathematical study, this full first year course in complex analysis offers new and interesting motivations for classical results and introduces related topics stressing motivation and technique. Numerous illustrations, examples, and now 300 exercises, enrich the text. Students who master this textbook will emerge with an excellent grounding in complex analysis, and a solid understanding of its wide applicability.