Imaging Light with Photoelectrons on the Nano-Femto Scale


Book Description

This thesis presents significant advances in the imaging and theory of the ultrafast dynamics of surface plasmon polariton fields. The author details construction of a sub-10 femtosecond and sub-10 nanometer spatiotemporal resolution ultrafast photoemission microscope which is subsequently used for the discovery of topological meron and skyrmion-like plasmonic quasiparticles. In particular, this enabled the creation of movies of the surface plasmon polariton fields evolving on sub-optical wavelength scales at around 0.1 femtosecond per image frame undergoing vortex phase evolution. The key insight that the transverse spin of surface plasmon polaritons undergoes a texturing into meron or skyrmion-like topological quasiparticles (defined by the geometric charge of the preparation) follows. In addition, this thesis develops an analytical theory of these new topological quasiparticles, opening new avenues of research, while the ultrafast microscopy techniques established within will also be broadly applicable to studies of nanoscale optical excitations in electronic materials.




Photosynergetic Responses in Molecules and Molecular Aggregates


Book Description

This book compiles the accomplishments of the recent research project on photochemistry “Photosynergetics”, supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan, aiming to develop and elucidate new methods and molecules leading to advanced utilization of photo-energies. Topics include photochemical responses induced by multiple excitation, multiphoton absorption, strong modulation of electronic states, developments of new photofunctional molecules, mesoscopic actuations induced by photoexcitation, and novel photoresponses in molecules and molecular assemblies. The authors stress that these approaches based on the synergetic interaction among many photons and many molecules enable the expansion of the accessibility to specific electronic states. As well, they explain how the development of reaction sequences and molecules/molecular assemblies ensure “additivity” and “integration” without loss of the photon energy, leading to new photoresponsive assemblies in meso- and macroscopic scales.




Handbook of Laser Technology and Applications


Book Description

This comprehensive handbook gives a fully updated guide to lasers and laser technologies, including the complete range of their technical applications. This third volume covers modern applications in engineering and technology, including all new and updated case studies spanning telecommunications and data storage to medicine, optical measurement, defense and security, nanomaterials processing and characterization. Key Features: • Offers a complete update of the original, bestselling work, including many brand-new chapters. • Deepens the introduction to fundamentals, from laser design and fabrication to host matrices for solid-state lasers, energy level diagrams, hosting materials, dopant energy levels, and lasers based on nonlinear effects. • Covers new laser types, including quantum cascade lasers, silicon-based lasers, titanium sapphire lasers, terahertz lasers, bismuth-doped fiber lasers, and diode-pumped alkali lasers. • Discusses the latest applications, e.g., lasers in microscopy, high-speed imaging, attosecond metrology, 3D printing, optical atomic clocks, time-resolved spectroscopy, polarization and profile measurements, pulse measurements, and laser-induced fluorescence detection. • Adds new sections on laser materials processing, laser spectroscopy, lasers in imaging, lasers in environmental sciences, and lasers in communications. This handbook is the ideal companion for scientists, engineers, and students working with lasers, including those in optics, electrical engineering, physics, chemistry, biomedicine, and other relevant areas.




Nonlinear X-Ray Spectroscopy for Materials Science


Book Description

X-ray experiments have been used widely in materials science, and conventional spectroscopy has been based on linear responses in light–matter interactions. Recent development of ultrafast light sources of tabletop lasers and X-ray free electron lasers reveals nonlinear optical phenomena in the X-ray region, and the measurement signals have been found to carry a further wealth of information on materials. This book overviews such nonlinear X-ray spectroscopy and its related issues for materials science. Each chapter is written by pioneers in the field and skillfully reviews the topics of nonlinear spectroscopy including X-ray multi-photon absorption and X-ray second harmonic generation. The chapters are divided depending on photon wavelength, ranging from extreme ultraviolet to (soft) X-ray. To facilitate readers’ comprehensive understanding, some of the chapters cover the conventional linear X-ray spectroscopy and basic principles of the non-linear responses. The book is mainly accessible as a primer for junior/senior- or graduate-level readers, and it also serves as a useful reference or guide even for established researchers in optical spectroscopy. The book offers readers opportunities to benefit from cutting-edge research in this new area of nonlinear X-ray spectroscopy.




Molecules in Superfluid Helium Nanodroplets


Book Description

This open access book covers recent advances in experiments using the ultra-cold, very weakly perturbing superfluid environment provided by helium nanodroplets for high resolution spectroscopic, structural and dynamic studies of molecules and synthetic clusters. The recent infra-red, UV-Vis studies of radicals, molecules, clusters, ions and biomolecules, as well as laser dynamical and laser orientational studies, are reviewed. The Coulomb explosion studies of the uniquely quantum structures of small helium clusters, X-ray imaging of large droplets and electron diffraction of embedded molecules are also described. Particular emphasis is given to the synthesis and detection of new species by mass spectrometry and deposition electron microscopy.







Single Lens


Book Description

Mikroskop / Geschichte.




Advances in Near-Field Optics


Book Description

This book brings together tutorial-style expository chapters on both foundational material and current research areas in near-field optics. The starting point for the book was the Summer School at the 16th International Conference on Near-Field Optics, Nanophotonics and Related Techniques (2022), with each Summer School short course represented by a chapter, along with an additional specially selected chapter on a complementary topic. Together, the chapters within present a modern perspective of the area of near-field optics, focusing on recent theoretical approaches, but also capturing the evolution of the field. Each chapter is written by an internationally-recognized expert and provides a tutorial on a different aspects of the theory and analytical methods for near-field optics, nanophotonics, and plasmonics. While the material will be accessible at the graduate level, it will also provide a useful reference for established researchers in near-field optics and scientists in nearby fields.




4D Electron Microscopy


Book Description

Structural phase transitions, mechanical deformations, and the embryonic stages of melting and crystallization are examples of phenomena that can now be imaged in unprecedented structural detail with high spatial resolution, and ten orders of magnitude as fast as hitherto. No monograph in existence attempts to cover the revolutionary dimensions that EM in its various modes of operation nowadays makes possible. The authors of this book chart these developments, and also compare the merits of coherent electron waves with those of synchrotron radiation. They judge it prudent to recall some important basic procedural and theoretical aspects of imaging and diffraction so that the reader may better comprehend the significance of the new vistas and applications now afoot. This book is not a vade mecum - numerous other texts are available for the practitioner for that purpose.




Ultrafast Phenomena in Molecular Sciences


Book Description

This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the state-of-the-art research that is being carried out in the field of ultrafast molecular science, from theoretical developments, through new phenomena induced by intense laser fields, to the latest techniques applied to the study of molecular dynamics.