Book Description
This second edition of Impact Mechanics offers new analytical methods with examples for the dynamics of low-speed impact.
Author : W. J. Stronge
Publisher : Cambridge University Press
Page : 383 pages
File Size : 39,65 MB
Release : 2018-11-15
Category : Science
ISBN : 0521841887
This second edition of Impact Mechanics offers new analytical methods with examples for the dynamics of low-speed impact.
Author : Tod A. Laursen
Publisher : Springer Science & Business Media
Page : 476 pages
File Size : 21,51 MB
Release : 2003-05-12
Category : Science
ISBN : 9783540429067
Many physical systems require the description of mechanical interaction across interfaces if they are to be successfully analyzed. Examples in the engineered world range from the design of prosthetics in biomedical engi neering (e. g. , hip replacements); to characterization of the response and durability of head/disk interfaces in computer magnetic storage devices; to development of pneumatic tires with better handling characteristics and increased longevity in automotive engineering; to description of the adhe sion and/or relative slip between concrete and reinforcing steel in structural engineering. Such mechanical interactions, often called contact/impact in teractions, usually necessitate at minimum the determination of areas over which compressive pressures must act to prevent interpenetration of the mechanical entities involved. Depending on the application, frictional be havior, transient interaction of interfaces with their surroundings (e. g. , in termittent stick/slip), thermo-mechanical coupling, interaction with an in tervening lubricant and/or fluid layer, and damage of the interface (i. e. , wear) may also be featured. When taken together (or even separately!), these features have the effect of making the equations of mechanical evolu tion not only highly nonlinear, but highly nonsmooth as well. While many modern engineering simulation packages possess impressive capabilities in the general area of nonlinear mechanics, it can be contended that methodologies typically utilized for contact interactions are relatively immature in comparison to other components of a nonlinear finite element package, such as large deformation kinematics, inelastic material modeling, nonlinear equation solving, or linear solver technology.
Author : James D. Walker
Publisher : Cambridge University Press
Page : 695 pages
File Size : 42,69 MB
Release : 2021-04-22
Category : Law
ISBN : 1108497101
Indispensable treatise on the mechanics of extreme dynamic events, including impact, shocks, penetration and high-rate material response.
Author : C. Lakshmana Rao
Publisher : John Wiley & Sons
Page : 573 pages
File Size : 37,39 MB
Release : 2016-06-13
Category : Science
ISBN : 1119241839
This book is intended to help the reader understand impact phenomena as a focused application of diverse topics such as rigid body dynamics, structural dynamics, contact and continuum mechanics, shock and vibration, wave propagation and material modelling. It emphasizes the need for a proper assessment of sophisticated experimental/computational tools promoted widely in contemporary design. A unique feature of the book is its presentation of several examples and exercises to aid further understanding of the physics and mathematics of impact process from first principles, in a way that is simple to follow.
Author : Bo Song
Publisher : Elsevier
Page : 360 pages
File Size : 12,71 MB
Release : 2021-08-25
Category : Technology & Engineering
ISBN : 0128233265
Summarizing the latest advances in experimental impact mechanics, this book provides cutting-edge techniques and methods for designing, executing, analyzing, and interpreting the results of experiments involving the dynamic responses of materials and structures. It provides tailored guidelines and solutions for specific applications and materials, covering topics such as dynamic characterization of metallic materials, fiber-like materials, low-impedance materials, concrete and more. Damage evolution and constitutive behavior of materials under impact loading, one-dimensional strain loading, intermediate and high strain rates, and other environmental conditions are discussed, as are techniques using high temperature testing and miniature Kolsky bars. Provides cutting-edge techniques and methods for designing, executing, analyzing, and interpreting the results of experimental impact mechanics Covers experimental guidelines and solutions for an array of different materials, conditions, and applications Enables readers to quickly design and perform their own experiments and properly interpret the results Looks at application-specific post-test analysis
Author : Stefan Hiermaier
Publisher : Springer Science & Business Media
Page : 416 pages
File Size : 36,74 MB
Release : 2007-10-23
Category : Science
ISBN : 0387738630
This book examines the testing and modeling of materials and structures under dynamic loading conditions. Readers get an in-depth analysis of the current mathematical modeling and simulation tools available for a variety of materials, alongside discussions of the benefits and limitations of these tools in industrial design. Following a logical and well organized structure, this volume uniquely combines experimental procedures with numerical simulation, and provides many examples.
Author : Bernard Brogliato
Publisher : Springer Science & Business Media
Page : 565 pages
File Size : 45,76 MB
Release : 2012-12-06
Category : Technology & Engineering
ISBN : 1447105575
Thank you for opening the second edition of this monograph, which is devoted to the study of a class of nonsmooth dynamical systems of the general form: ::i; = g(x,u) (0. 1) f(x, t) 2: 0 where x E JRn is the system's state vector, u E JRm is the vector of inputs, and the function f (-, . ) represents a unilateral constraint that is imposed on the state. More precisely, we shall restrict ourselves to a subclass of such systems, namely mechanical systems subject to unilateral constraints on the position, whose dynamical equations may be in a first instance written as: ii= g(q,q,u) (0. 2) f(q, t) 2: 0 where q E JRn is the vector of generalized coordinates of the system and u is an in put (or controller) that generally involves a state feedback loop, i. e. u= u(q, q, t, z), with z= Z(z, q, q, t) when the controller is a dynamic state feedback. Mechanical systems composed of rigid bodies interacting fall into this subclass. A general prop erty of systems as in (0. 1) and (0. 2) is that their solutions are nonsmooth (with respect to time): Nonsmoothness arises primarily from the occurence of impacts (or collisions, or percussions) in the dynamical behaviour, when the trajectories attain the surface f(x, t) = O. They are necessary to keep the trajectories within the subspace = {x : f(x, t) 2: O} of the system's state space.
Author : Ciaran Simms
Publisher : Springer Science & Business Media
Page : 240 pages
File Size : 45,77 MB
Release : 2009-07-21
Category : Science
ISBN : 9048127432
The aim of this book is to present pedestrian injuries from a biomechanical perspective. We aim to give a detailed treatment of the physics of pedestrian impact, as well as a review of the accident databases and the relevant injury criteria used to assess pedestrian injuries. A further focus will be the effects on injury outcome of (1) pedestrian/vehicle position and velocity at impact and (2) the influence of vehicle design on injury outcome. Most of the content of this book has been published by these and other authors in various journals, but this book will provide a comprehensive treatment of the biomechanics of pedestrian impacts for the first time. It will therefore be of value to new and established researchers alike.
Author :
Publisher : Elsevier
Page : 355 pages
File Size : 12,21 MB
Release : 2007-04-04
Category : Technology & Engineering
ISBN : 0080474942
The major developments in the fields of fluid and solid mechanics are scattered throughout an array of technical journals, often making it difficult to find what the real advances are, especially for a researcher new to the field or an individual interested in discovering the state-of-the-art in connection with applications. The Advances in Applied Mechanics book series draws together recent significant advances in various topics in applied mechanics. Published since 1948, Advances in Applied Mechanics aims to provide authoritative review articles on topics in the mechanical sciences, primarily of interest to scientists and engineers working in the various branches of mechanics, but also of interest to the many who use the results of investigations in mechanics in various application areas such as aerospace, chemical, civil, environmental, mechanical and nuclear engineering. Advances in Applied Mechanics continues to be a publication of high visibility and impact. Review articles are provided by active, leading scientists in the field by invitation of the editors. Many of the articles published have become classics within their fields. Volume 41 in the series contains articles on topological fluid mechanics, electrospinning, vortex dynamics and self-assembly. - Covers all fields of the mechanical sciences - Highlights classical and modern areas of mechanics that are ready for review - Provides comprehensive coverage of the field in question
Author : Raouf A. Ibrahim
Publisher : Springer Science & Business Media
Page : 301 pages
File Size : 37,29 MB
Release : 2009-05-12
Category : Technology & Engineering
ISBN : 3642002757
Studies of vibro-impact dynamics falls into three main categories: modeling, mapping and applications. This text covers the latest in those studies plus selected deterministic and stochastic applications. It includes a bibliography exceeding 1,100 references.