Impact Polypropylene via Gas Process - Cost Analysis - PP E22A


Book Description

This report presents a cost analysis of Polypropylene (PP) impact copolymer production from polymer grade (PG) propylene and ethylene using a gas phase polymerization process. The process examined is similar to Grace UNIPOL process. This process is based on the polymerization of gaseous PG propylene and ethylene in fluidized-bed reactors. This report was developed based essentially on the following reference(s): Keywords: PG Propylene, Propene, Ethene, Dow, Gas-Phase Reactor, Fluidized Bed Reactor




Handbook of Bioenergy Crops


Book Description

This completely revised second edition includes new information on biomass in relation to climate change, new coverage of vital issues including the "food versus fuel" debate, and essential new information on "second generation" fuels and advances in conversion techniques. The book begins with a guide to biomass accumulation, harvesting, transportation and storage, as well as conversion technologies for biofuels. This is followed by an examination of the environmental impact and economic and social dimensions, including prospects for renewable energy. The book then goes on to cover all the main potential energy crops.




Heat Transfer in Polymer Composite Materials


Book Description

This book addresses general information, good practices and examples about thermo-physical properties, thermo-kinetic and thermo-mechanical couplings, instrumentation in thermal science, thermal optimization and infrared radiation.




Industrial Environmental Chemistry


Book Description

This monograph consists of manuscripts submitted by invited speakers who participated in the symposium "Industrial Environmental Chemistry: Waste Minimization in Industrial Processes and Remediation of Hazardous Waste," held March 24-26, 1992, at Texas A&M University. This meeting was the tenth annual international symposium sponsored by the Texas A&M Industry-University Cooperative Chemistry Program (IUCCP). The program was developed by an academic-industrial steering committee consisting of the co-chairmen, Professors Donald T. Sawyer and Arthur E. Martell of the Texas A&M University Chemistry Department, and members appointed by the sponsoring companies: Bernie A. Allen, Jr., Dow Chemical USA; Kirk W. Brown, Texas A&M University; Abraham Clearfield, Texas A&M University; Greg Leyes, Monsanto Company; Jay Warner, Hoechst-Celanese Corporation; Paul M. Zakriski, BF Goodrich Company; and Emile A. Schweikert, Texas A&M University (IUCCP Coordinator). The subject of this conference reflects the interest that has developed in academic institutions and industry for technological solutions to environmental contamination by industrial wastes. Progress is most likely with strategies that minimize waste production from industrial processes. Clearly the key to the protection and preservation of the environment will be through R&D that optimizes chemical processes to minimize or eliminate waste streams. Eleven of the papers are directed to waste minimization. An additional ten papers discuss chemical and biological remediation strategies for hazardous wastes that contaminate soils, sludges, and water.




Composite Materials


Book Description

Composite materials are used as substitutions of metals/traditional materials in aerospace, automotive, civil, mechanical and other industries. The present book collects the current knowledge and recent developments in the characterization and application of composite materials. To this purpose the volume describes the outstanding properties of this class of advanced material which recommend it for various industrial applications.




Handbook of Biofuels Production


Book Description

Handbook of Biofuels Production, Second Edition, discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage. Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The book provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Key changes for this second edition include increased coverage of emerging feedstocks, including microalgae, more emphasis on by-product valorization for biofuels' production, additional chapters on emerging biofuel production methods, and discussion of the emissions associated with biofuel use in engines. The editorial team is strengthened by the addition of two extra members, and a number of new contributors have been invited to work with authors from the first edition to revise existing chapters, thus offering fresh perspectives. - Provides systematic and detailed coverage of the processes and technologies being used for biofuel production - Discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage - Reviews the production of both first and second generation biofuels - Addresses integrated biofuel production in biorefineries and the use of waste materials as feedstocks




Impact Polypropylene via Gas Process - Cost Analysis - PP E21A


Book Description

This report presents a cost analysis of Polypropylene (PP) impact copolymer production from polymer grade (PG) propylene and ethylene using a gas phase polymerization process. The process examined is similar to LyondellBasell Spherizone process. This process is based on the polymerization of PG propylene and ethylene in a multi-zone circulating reactor. This report was developed based essentially on the following reference(s): Keywords: PG Propylene, Propene, Ethene, MZCR, Gas-Phase Reactor, Bimodal




Finite Element Modelling of Composite Materials and Structures


Book Description

Finite element modelling of composite materials and structures provides an introduction to a technique which is increasingly being used as an analytical tool for composite materials.The text is presented in four parts: - Part one sets the scene and reviews the fundamentals of composite materials together with the basic nature of FRP and its constituents. Two-dimensional stress-strain is covered, as is laminated plated theory and its limitations. - Part two reviews the basic principles of FE analysis, starting with underlying theoretical issues and going on to show how elements are derived, a model is generated and results are processed. - Part three builds on the basics of FE analysis and considers the particular issues that arise in applying finite elements to composites, especially to the layered nature of the material. - Part four deals with the application of FE to FRP composites, presenting analytical models alongside FE representations. Specific issues addressed include interlaminar stresses, fracture delamination, joints and fatigue.This book is invaluable for students of materials science and engineering, and for engineers and others wishing to expand their knowledge of structural analysis. - Covers important work on finite element analysis of composite material performance - Based on material developed for an MSc course at Imperial College, London, UK - Covers particular problems such as holes, free edges with FE results compared with experimental data and classical analysis




Statistics for Analytical Chemistry


Book Description




Green Biocomposites


Book Description

This book introduces the concept, design and application of green biocomposites, with a specific focus on the current demand for green biocomposites for automotive and aerospace components. It discusses the mathematical background, innovative approaches to physical modelling, analysis and design techniques. Including numerous illustrations, tables, case studies and exercises, the text summarises current research in the field. It is a valuable reference resource for researchers, students and scientists working in the field of materials science.