Modeling and Simulation of Mixed Analog-Digital Systems


Book Description

Modeling and Simulation of Mixed Analog-Digital Systems brings together in one place important contributions and state-of-the-art research results in this rapidly advancing area. Modeling and Simulation of Mixed Analog-Digital Systems serves as an excellent reference, providing insight into some of the most important issues in the field.




Mixed-Mode Simulation and Analog Multilevel Simulation


Book Description

Mixed-Mode Simulation and Analog Multilevel Simulation addresses the problems of simulating entire mixed analog/digital systems in the time-domain. A complete hierarchy of modeling and simulation methods for analog and digital circuits is described. Mixed-Mode Simulation and Analog Multilevel Simulation also provides a chronology of the research in the field of mixed-mode simulation and analog multilevel simulation over the last ten to fifteen years. In addition, it provides enough information to the reader so that a prototype mixed-mode simulator could be developed using the algorithms in this book. Mixed-Mode Simulation and Analog Multilevel Simulation can also be used as documentation for the SPLICE family of mixed-mode programs as they are based on the algorithms and techniques described in this book.




Analog Circuit Design


Book Description

Johan H. Huijsing This book contains 18 tutorial papers concentrated on 3 topics, each topic being covered by 6 papers. The topics are: Low-Noise, Low-Power, Low-Voltage Mixed-Mode Design with CAD Tools Voltage, Current, and Time References The papers of this book were written by top experts in the field, currently working at leading European and American universities and companies. These papers are the reviewed versions of the papers presented at the Workshop on Advances in Analog Circuit Design. which was held in Villach, Austria, 26-28 April 1995. The chairman of the Workshop was Dr. Franz Dielacher from Siemens, Austria. The program committee existed of Johan H. Huijsing from the Delft University of Technology, Prof.Willy Sansen from the Catholic University of Leuven, and Dr. Rudy 1. van der Plassche from Philips Eindhoven. This book is the fourth of aseries dedicated to the design of analog circuits. The topics which were covered earlier were: Operational Amplifiers Analog to Digital Converters Analog Computer Aided Design Mixed AlD Circuit Design Sensor Interface Circuits Communication Circuits Low-Power, Low-Voltage Integrated Filters Smart Power As the Workshop will be continued year by year, a valuable series of topics will be built up from all the important areas of analog circuit design. I hope that this book will help designers of analog circuits to improve their work and to speed it up.




VLSI: Systems on a Chip


Book Description

For over three decades now, silicon capacity has steadily been doubling every year and a half with equally staggering improvements continuously being observed in operating speeds. This increase in capacity has allowed for more complex systems to be built on a single silicon chip. Coupled with this functionality increase, speed improvements have fueled tremendous advancements in computing and have enabled new multi-media applications. Such trends, aimed at integrating higher levels of circuit functionality are tightly related to an emphasis on compactness in consumer electronic products and a widespread growth and interest in wireless communications and products. These trends are expected to persist for some time as technology and design methodologies continue to evolve and the era of Systems on a Chip has definitely come of age. While technology improvements and spiraling silicon capacity allow designers to pack more functions onto a single piece of silicon, they also highlight a pressing challenge for system designers to keep up with such amazing complexity. To handle higher operating speeds and the constraints of portability and connectivity, new circuit techniques have appeared. Intensive research and progress in EDA tools, design methodologies and techniques is required to empower designers with the ability to make efficient use of the potential offered by this increasing silicon capacity and complexity and to enable them to design, test, verify and build such systems.




Mixed-Mode Simulation


Book Description

Our purpose in writing this book was two-fold. First, we wanted to compile a chronology of the research in the field of mixed-mode simulation over the last ten to fifteen years. A substantial amount of work was done during this period of time but most of it was published in archival form in Masters theses and Ph. D. dissertations. Since the interest in mixed-mode simulation is growing, and a thorough review of the state-of-the-art in the area was not readily available, we thought it appropriate to publish the information in the form of a book. Secondly, we wanted to provide enough information to the reader so that a proto type mixed-mode simulator could be developed using the algorithms in this book. The SPLICE family of programs is based on the algorithms and techniques described in this book and so it can also serve as docu mentation for these programs. ACKNOWLEDGEMENTS The authors would like to dedicate this book to Prof. D. O. Peder son for inspiring this research work and for providing many years of support and encouragement The authors enjoyed many fruitful discus sions and collaborations with Jim Kleckner, Young Kim, Alberto Sangiovanni-Vincentelli, and Jacob White, and we thank them for their contributions. We also thank the countless others who participated in the research work and read early versions of this book. Lillian Beck provided many useful suggestions to improve the manuscript. Yun cheng Ju did the artwork for the illustrations.




EDA for IC Implementation, Circuit Design, and Process Technology


Book Description

Presenting a comprehensive overview of the design automation algorithms, tools, and methodologies used to design integrated circuits, the Electronic Design Automation for Integrated Circuits Handbook is available in two volumes. The second volume, EDA for IC Implementation, Circuit Design, and Process Technology, thoroughly examines real-time logic to GDSII (a file format used to transfer data of semiconductor physical layout), analog/mixed signal design, physical verification, and technology CAD (TCAD). Chapters contributed by leading experts authoritatively discuss design for manufacturability at the nanoscale, power supply network design and analysis, design modeling, and much more. Save on the complete set.




Computer-Aided Design of Analog Integrated Circuits and Systems


Book Description

The tools and techniques you need to break the analog design bottleneck! Ten years ago, analog seemed to be a dead-end technology. Today, System-on-Chip (SoC) designs are increasingly mixed-signal designs. With the advent of application-specific integrated circuits (ASIC) technologies that can integrate both analog and digital functions on a single chip, analog has become more crucial than ever to the design process. Today, designers are moving beyond hand-crafted, one-transistor-at-a-time methods. They are using new circuit and physical synthesis tools to design practical analog circuits; new modeling and analysis tools to allow rapid exploration of system level alternatives; and new simulation tools to provide accurate answers for analog circuit behaviors and interactions that were considered impossible to handle only a few years ago. To give circuit designers and CAD professionals a better understanding of the history and the current state of the art in the field, this volume collects in one place the essential set of analog CAD papers that form the foundation of today's new analog design automation tools. Areas covered are: * Analog synthesis * Symbolic analysis * Analog layout * Analog modeling and analysis * Specialized analog simulation * Circuit centering and yield optimization * Circuit testing Computer-Aided Design of Analog Integrated Circuits and Systems is the cutting-edge reference that will be an invaluable resource for every semiconductor circuit designer and CAD professional who hopes to break the analog design bottleneck.







Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology


Book Description

The second of two volumes in the Electronic Design Automation for Integrated Circuits Handbook, Second Edition, Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology thoroughly examines real-time logic (RTL) to GDSII (a file format used to transfer data of semiconductor physical layout) design flow, analog/mixed signal design, physical verification, and technology computer-aided design (TCAD). Chapters contributed by leading experts authoritatively discuss design for manufacturability (DFM) at the nanoscale, power supply network design and analysis, design modeling, and much more. New to This Edition: Major updates appearing in the initial phases of the design flow, where the level of abstraction keeps rising to support more functionality with lower non-recurring engineering (NRE) costs Significant revisions reflected in the final phases of the design flow, where the complexity due to smaller and smaller geometries is compounded by the slow progress of shorter wavelength lithography New coverage of cutting-edge applications and approaches realized in the decade since publication of the previous edition—these are illustrated by new chapters on 3D circuit integration and clock design Offering improved depth and modernity, Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology provides a valuable, state-of-the-art reference for electronic design automation (EDA) students, researchers, and professionals.




Monolithic Phase-Locked Loops and Clock Recovery Circuits


Book Description

Featuring an extensive 40 page tutorial introduction, this carefully compiled anthology of 65 of the most important papers on phase-locked loops and clock recovery circuits brings you comprehensive coverage of the field-all in one self-contained volume. You'll gain an understanding of the analysis, design, simulation, and implementation of phase-locked loops and clock recovery circuits in CMOS and bipolar technologies along with valuable insights into the issues and trade-offs associated with phase locked systems for high speed, low power, and low noise.