In Situ Recovery & Remediation of Metals


Book Description

Current trends in mining are driving the demand for subsurface extraction technologies with low surface impacts that protect surface and ground water. Moreover, the necessity for sustainable mineral extraction technologies has increased as regulatory restrictions and technical challenges to traditional mining grow with production from deeper and deeper remaining metal resources. This book provides a state-of-the-art synopsis of in situ metal recovery and remediation technologies based on both research and commercial projects. In situ recovery uses fluid-based metal dissolution and recovery to extract one or more commodities from a largely intact rock mass using similar processes that create ore deposits. The fluid is circulated through ore by gravity and/or pumps using injection and recovery wells. A processing facility is usually established at the surface of the operation to extract the commodity of interest. The barren fluid is then recirculated back into the recovery circuit. In situ remediation uses similar wellfield technology and chemical processes to stabilize metal contaminants by injecting agents that form stable solids or less toxic species when combined with a contaminant. The fluid depleted in the stabilizing agent is then pumped back to the surface and regenerated. In situ mining or recovery has been successfully applied to several commodities, including uranium, sulfur, evaporites, and copper, which have favorable chemical properties and deposit types for in situ recovery.




In Situ Recovery and Remediation of Metals


Book Description

This book provides a state-of-the-art synopsis of in situ metal recovery and remediation technologies based on both research and commercial projects. In situ recovery uses fluid-based metal dissolution and recovery to extract one or more commodities from a largely intact rock mass using similar processes that create ore deposits.




New Trends in Removal of Heavy Metals from Industrial Wastewater


Book Description

New Trends in Removal of Heavy Metals from Industrial Wastewater covers the applicable technologies relating to the removal of heavy metals from wastewater and new and emerging trends in the field, both at the laboratory and industrial scale. Sections explore new environmentally friendly technologies, the principles of sustainable development, the main factors contributing to heavy metal removal from wastewater, methods and procedures, materials (especially low-cost materials originated from industrial and agricultural waste), management of wastewater containing heavy metals and wastewater valorization, recycling, environmental impact, and wastewater policies for post heavy metal removal. This book is an advanced and updated vision of existing heavy metal removal technologies with their limitations and challenges and their potential application to remove heavy metals/environmental pollutants through advancements in bioremediation. Finally, sections also cover new trends and advances in environmental bioremediation with recent developments in this field by an application of chemical/biochemical and environmental biotechnology. - Outlines the fate and occurrence of heavy metals in Wastewater Treatment Plants (WWTPs) and potential approaches for their removal - Describes the techniques currently available for removing heavy metals from wastewater - Discusses the emerging technologies in heavy metal removal - Covers biological treatments to remove heavy metals - Includes the valorization of heavy metal containing wastewater




Emerging Nanomaterials for Recovery of Toxic and Radioactive Metal Ions from Environmental Media


Book Description

Emerging Nanomaterials for Recovery of Toxic and Radioactive Metal Ions from Environmental Media covers nanomaterials used in the environmental remediation of sites contaminated by toxic or radioactive heavy metals. The book comprehensively covers the use of MOF-based nanomaterials, COF-based nanomaterials, MXene-based nanomaterials, nZVI-based nanomaterials and carbon-based nanomaterials in remediation techniques and details the main interaction mechanisms between toxic/radioactive metal ions and the described novel nanomaterials through kinetic analysis, thermodynamic analysis, spectroscopic techniques and theoretical calculations. It provides a thorough reference on the use of the described novel nanomaterials for academics, researchers and advanced postgraduates in the environmental sciences and environmental chemistry. - Provides a comprehensive and systematic reference on various novel nanomaterials that are available for use in the treatment of heavy metal ions and radioactive wastes - Presents the latest knowledge on the interaction of toxic and radioactive metal ions with novel nanomaterials, including how to choose different materials for specific uses - Covers the principles and functionalization of nanomaterials in environmental remediation, enabling an understanding of methodologies and best choice in nanomaterials




Bioelectrochemical Systems


Book Description

In the context of wastewater treatment, Bioelectrochemical Systems (BESs) have gained considerable interest in the past few years, and several BES processes are on the brink of application to this area. This book, written by a large number of world experts in the different sub-topics, describes the different aspects and processes relevant to their development. Bioelectrochemical Systems (BESs) use micro-organisms to catalyze an oxidation and/or reduction reaction at an anodic and cathodic electrode respectively. Briefly, at an anode oxidation of organic and inorganic electron donors can occur. Prime examples of such electron donors are waste organics and sulfides. At the cathode, an electron acceptor such as oxygen or nitrate can be reduced. The anode and the cathode are connected through an electrical circuit. If electrical power is harvested from this circuit, the system is called a Microbial Fuel Cell; if electrical power is invested, the system is called a Microbial Electrolysis Cell. The overall framework of bio-energy and bio-fuels is discussed. A number of chapters discuss the basics – microbiology, microbial ecology, electrochemistry, technology and materials development. The book continues by highlighting the plurality of processes based on BES technology already in existence, going from wastewater based reactors to sediment based bio-batteries. The integration of BESs into existing water or process lines is discussed. Finally, an outlook is provided of how BES will fit within the emerging biorefinery area.




Phytoremediation of Contaminated Soil and Water


Book Description

Phytoremediation is an exciting, new technology that utilizes metal-accumulating plants to rid soil of heavy metal and radionuclides. Hyperaccumulation plants are an appealing and economical alternative to current methods of soil recovery. Phytoremediation of Contaminated Soil and Water is the most thorough literary examination of the subject available today. The successful implementation of phytoremediation depends on identifying plant material that is well adapted to specific toxic sites. Gentle remediation is then applied in situ, or at the contamination site. No soil excavation or transport is necessary. This severely contains the potential risk of the pollutants entering the food chain. And it's cost effective. The progress of modern man has created many sites contaminated with heavy metals. The effected land is toxic to plants and animals , which creates considerable public interest in remediation. But the commonly used remedies are ex situ, which poses an expensive dilemma and an even greater threat. Phytoremediation offers the prospect of a cheaper and healthier way to deal with this problem. Read Phytoremediation of Contaminated Soil and Water to learn just how far this burgeoning technology has developed.







Behavior of Metals in Soils


Book Description




Sustainable Heavy Metal Remediation


Book Description

This book covers the principles, underlying mechanisms, thermodynamic functions, kinetics and modeling aspects of sustainable technologies, particularly from the standpoint of applying physical, chemical and biological processes for the treatment of wastewater polluted with heavy metals. Particular emphasis has been given to technologies that are based on adsorption, electro-coagulation, bio-precipitation, bio-solubilization, phytoremediation and microbial electrolysis. Metal contamination in the environment is one of the persisting global issues. The adverse health effects of heavy metals on human beings and its impact on the environment has been well-documented. Several physico-chemical and biological technologies have been successfully implemented to prevent and control the discharge of industrial heavy metal emissions. On the contrary, metal resource depletion has also accelerated dramatically during the 20th century due to rapid advances in industrial engineering and medical sciences, which requires large amount of raw materials. To meet the global metal demand, in recent years, novel research lines have started to focus on the recovery of metals from metal contaminated waste streams. In order to conflate both metal removal and recovery, new technologies have been successfully tested, both at the lab and pilot-scale. The target audience of this book primarily comprises of research experts, practicing engineers in the field of environmental/chemical technology and graduate students.




Resource Recovery from Wastes


Book Description

The concept of a circular economy has been gaining increasing attention in recent years. Many of the sources of chemicals we have become reliant on are dwindling and the accumulation of waste products poses a serious environmental problem. Recovering resources from these waste materials can reduce our dependence on less sustainable virgin feedstocks, as well as reducing the quantity of material going to landfill sites. Bringing together a broad range of cross-disciplinary topics on resource recovery this book provides a valuable resource for those working in circular economy research, green chemistry and waste management.