Incertitudes, optimisation et fiabilité des structures


Book Description

La fiabilité des systèmes complexes est un défi majeur pour les entreprises industrielles. Ces dernières doivent répondre aux exigences des donneurs d’ordre dont le non-respect entraînerait des pénalités compromettant les marchés futurs. L’un des enjeux majeurs de l’optimisation fiabiliste est d’établir une surveillance rigoureuse, capable de prédire et de détecter les modes de défaillances des systèmes étudiés. Cet ouvrage présente les avancées de la recherche et de l’industrie appliquées aux domaines de l’optimisation, de la fiabilité et de la prise en compte des incertitudes en mécanique. Ce couplage est à la base de la compétitivité des entreprises dans les secteurs de l’automobile, de l’aéronautique, du génie civil ou encore de la défense. Accompagné d’exemples détaillés, Incertitudes, optimisation et fiabilité des structures présente les nouveaux outils de conception les plus performants. Il s’adresse aux ingénieurs et aux enseignants-chercheurs.




Structural Nonlinear Dynamics and Diagnosis


Book Description

This book, which presents the peer-reviewed post-proceedings of CSNDD 2012 and CSNDD 2014, addresses the important role that relevant concepts and tools from nonlinear and complex dynamics could play in present and future engineering applications. It includes 22 chapters contributed by outstanding researchers and covering various aspects of applications, including: structural health monitoring, diagnosis and damage detection, experimental methodologies, active vibration control and smart structures, passive control of structures using nonlinear energy sinks, vibro-impact dynamic MEMS/NEMS/AFM, energy-harvesting materials and structures, and time-delayed feedback control, as well as aspects of deterministic versus stochastic dynamics and control of nonlinear phenomena in physics. Researchers and engineers interested in the challenges posed and opportunities offered by nonlinearities in the development of passive and active control strategies, energy harvesting, novel design criteria, modeling and characterization will find the book to be an outstanding introduction.




Fluid-Structure Interactions and Uncertainties


Book Description

This book is dedicated to the general study of fluid structure interaction with consideration of uncertainties. The fluid-structure interaction is the study of the behavior of a solid in contact with a fluid, the response can be strongly affected by the action of the fluid. These phenomena are common and are sometimes the cause of the operation of certain systems, or otherwise manifest malfunction. The vibrations affect the integrity of structures and must be predicted to prevent accelerated wear of the system by material fatigue or even its destruction when the vibrations exceed a certain threshold.




Reliability of Nuclear Power Plants


Book Description

Since the 1970s, the field of industrial reliability has evolved significantly, in part due to the design and early operation of the first generation nuclear power plants. Indeed, the needs of this sector have led to the development of specific and innovative reliability methods, which have since been taken up and adapted by other industrial sectors, leading to the development of the management of uncertainties and Health and Usage Monitoring Systems. In this industry, reliability assessment approaches have matured. There are now methods, data and tools available that can be used with confidence for many industrial applications. The purpose of this book is to present and illustrate them with real study cases. The book addresses the evolution of reliability methods, experience feedback and expertise (as data is essential for estimating reliability), the reliability of socio-technical systems and probabilistic safety assessments, the structural reliability and probabilistic models in mechanics, the reliability of equipment and the impact of maintenance on their behavior, human and organizational factors and the impact of big data on reliability. Finally, some R&D perspectives that can be developed in the future are presented. Written by several engineers, statisticians and human and organizational factors specialists in the nuclear sector, this book is intended for all those who are faced with a reliability assessment of their installations or equipment: decision-makers, engineers, designers, operation or maintenance engineers, project managers, human and organizational factors specialists, experts and regulatory authority inspectors, teachers, researchers and doctoral students.




Material Forming Processes


Book Description

Manufacturing industries strive to improve the quality and reliability of their products, while simultaneously reducing production costs. To do this, modernized work tools must be produced; this will enable a reduction in the duration of the product development cycle, optimization of product development procedures, and ultimately improvement in the productivity of design and manufacturing phases. Numerical simulations of forming processes are used to this end, and in this book various methods and models for forming processes (including stamping, hydroforming and additive manufacturing) are presented. The theoretical and numerical advances of these processes involving large deformation mechanics on the basis of large transformations are explored, in addition to the various techniques for optimization and calculation of reliability. The advances and techniques within this book will be of interest to professional engineers in the automotive, aerospace, defence and other industries, as well as graduates and undergraduates in these fields.




Applied Reliability for Industry 3


Book Description




Dynamics of Large Structures and Inverse Problems


Book Description

This book deals with the various aspects of stochastic dynamics, the resolution of large mechanical systems, and inverse problems. It integrates the most recent ideas from research and industry in the field of stochastic dynamics and optimization in structural mechanics over 11 chapters. These chapters provide an update on the various tools for dealing with uncertainties, stochastic dynamics, reliability and optimization of systems. The optimization–reliability coupling in structures dynamics is approached in order to take into account the uncertainties in the modeling and the resolution of the problems encountered. Accompanied by detailed examples of uncertainties, optimization, reliability, and model reduction, this book presents the newest design tools. It is intended for students and engineers and is a valuable support for practicing engineers and teacher-researchers.




Applied Reliability for Industry 1


Book Description

Applied Reliability for Industry 1 illustrates the multidisciplinary state-of-the-art science of predictive reliability. Many experts are now convinced that reliability is not limited to statistical sciences. In fact, many different disciplines interact in order to bring a product to its highest possible level of reliability, made available through today’s technologies, developments and production methods. These three books, of which this is the first, propose new methods for analyzing the lifecycle of a system, enabling us to record the development phases according to development time and levels of complexity for its integration. Predictive reliability, as particularly focused on in Applied Reliability for Industry 1, examines all the engineering activities used to estimate or predict the reliability performance of the final mechatronic system.




Stochastic Dynamics of Structures


Book Description

This book is dedicated to the general study of the dynamics of mechanical structures with consideration of uncertainties. The goal is to get the appropriate forms of a part in minimizing a given criterion. In all fields of structural mechanics, the impact of good design of a room is very important to its strength, its life and its use in service. The development of the engineer's art requires considerable effort to constantly improve structural design techniques.




Compressible Flow Propulsion and Digital Approaches in Fluid Mechanics


Book Description

This book aims to provide an efficient methodology of solving a fluid mechanics problem, based on an awareness of the physical. It meets different objectives of the student, the future engineer or scientist: Simple sizing calculations are required to master today's numerical approach for solving complex practical problems.