From Frege to Gödel


Book Description

The fundamental texts of the great classical period in modern logic, some of them never before available in English translation, are here gathered together for the first time. Modern logic, heralded by Leibniz, may be said to have been initiated by Boole, De Morgan, and Jevons, but it was the publication in 1879 of Gottlob Frege’s Begriffsschrift that opened a great epoch in the history of logic by presenting, in full-fledged form, the propositional calculus and quantification theory. Frege’s book, translated in its entirety, begins the present volume. The emergence of two new fields, set theory and foundations of mathematics, on the borders of logic, mathematics, and philosophy, is depicted by the texts that follow. Peano and Dedekind illustrate the trend that led to Principia Mathematica. Burali-Forti, Cantor, Russell, Richard, and König mark the appearance of the modern paradoxes. Hilbert, Russell, and Zermelo show various ways of overcoming these paradoxes and initiate, respectively, proof theory, the theory of types, and axiomatic set theory. Skolem generalizes Löwenheim’s theorem, and he and Fraenkel amend Zermelo’s axiomatization of set theory, while von Neumann offers a somewhat different system. The controversy between Hubert and Brouwer during the twenties is presented in papers of theirs and in others by Weyl, Bernays, Ackermann, and Kolmogorov. The volume concludes with papers by Herbrand and by Gödel, including the latter’s famous incompleteness paper. Of the forty-five contributions here collected all but five are presented in extenso. Those not originally written in English have been translated with exemplary care and exactness; the translators are themselves mathematical logicians as well as skilled interpreters of sometimes obscure texts. Each paper is introduced by a note that sets it in perspective, explains its importance, and points out difficulties in interpretation. Editorial comments and footnotes are interpolated where needed, and an extensive bibliography is included.




Analytic Combinatorics


Book Description

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.




Quasicrystals and Geometry


Book Description

This first-ever detailed account of quasicrystal geometry will be of great value to mathematicians at all levels with an interest in quasicrystals and geometry, and will also be of interest to graduate students and researchers in solid state physics, crystallography and materials science.




Stochastic Processes and Functional Analysis


Book Description

This volume contains the proceedings of the AMS Special Session on Celebrating M. M. Rao's Many Mathematical Contributions as he Turns 90 Years Old, held from November 9–10, 2019, at the University of California, Riverside, California. The articles show the effectiveness of abstract analysis for solving fundamental problems of stochastic theory, specifically the use of functional analytic methods for elucidating stochastic processes and their applications. The volume also includes a biography of M. M. Rao and the list of his publications.




The Oxford Handbook of Philosophy of Mathematics and Logic


Book Description

Covers the state of the art in the philosophy of maths and logic, giving the reader an overview of the major problems, positions, and battle lines. The chapters in this book contain both exposition and criticism as well as substantial development of their own positions. It also includes a bibliography.




Analytic Theory of Polynomials


Book Description

Presents easy to understand proofs of same of the most difficult results about polynomials demonstrated by means of applications




Concepts of Nonparametric Theory


Book Description

This book explores both non parametric and general statistical ideas by developing non parametric procedures in simple situations. The major goal is to give the reader a thorough intuitive understanding of the concepts underlying nonparametric procedures and a full appreciation of the properties and operating characteristics of those procedures covered. This book differs from most statistics books by including considerable philosophical and methodological discussion. Special attention is given to discussion of the strengths and weaknesses of various statistical methods and approaches. Difficulties that often arise in applying statistical theory to real data also receive substantial attention. The approach throughout is more conceptual than mathematical. The "Theorem-Proof" format is avoided; generally, properties are "shown," rather than "proved." In most cases the ideas behind the proof of an im portant result are discussed intuitively in the text and formal details are left as an exercise for the reader. We feel that the reader will learn more from working such things out than from checking step-by-step a complete presen tation of all details.




Stochastic Processes and Functional Analysis


Book Description

"Covers the areas of modern analysis and probability theory. Presents a collection of papers given at the Festschrift held in honor of the 65 birthday of M. M. Rao, whose prolific published research includes the well-received Marcel Dekker, Inc. books Theory of Orlicz Spaces and Conditional Measures and Applications. Features previously unpublished research articles by a host of internationally recognized scholars."




Continuous Lattices and Their Applications


Book Description

This book contains articles on the notion of a continuous lattice, which has its roots in Dana Scott's work on a mathematical theory of computation, presented at a conference on categorical and topological aspects of continuous lattices held in 1982.




An Introduction to Nonparametric Statistics


Book Description

An Introduction to Nonparametric Statistics presents techniques for statistical analysis in the absence of strong assumptions about the distributions generating the data. Rank-based and resampling techniques are heavily represented, but robust techniques are considered as well. These techniques include one-sample testing and estimation, multi-sample testing and estimation, and regression. Attention is paid to the intellectual development of the field, with a thorough review of bibliographical references. Computational tools, in R and SAS, are developed and illustrated via examples. Exercises designed to reinforce examples are included. Features Rank-based techniques including sign, Kruskal-Wallis, Friedman, Mann-Whitney and Wilcoxon tests are presented Tests are inverted to produce estimates and confidence intervals Multivariate tests are explored Techniques reflecting the dependence of a response variable on explanatory variables are presented Density estimation is explored The bootstrap and jackknife are discussed This text is intended for a graduate student in applied statistics. The course is best taken after an introductory course in statistical methodology, elementary probability, and regression. Mathematical prerequisites include calculus through multivariate differentiation and integration, and, ideally, a course in matrix algebra.