Industrial Demand Response


Book Description

Demand response (DR) describes controlled changes in the power consumption whose role is to better match the power demand with the supply. This reference, written by an international team of experts from academia and industry, covers the principles, implementation and applications of DR.




Industrial Demand Response


Book Description

Demand response (DR) describes controlled changes in the power consumption whose role is to better match the power demand with the supply. This reference, written by an international team of experts from academia and industry, covers the principles, implementation and applications of DR.




Industrial Demand Response


Book Description

Incentives for industrial loads to provide demand response on day-ahead and reserve markets are affected both by network tariffs, as well as regulations on the provision of flexibility in different markets. This paper uses a numerical model of the chlor-alkali process with a storable intermediate good to investigate how these factors affect the provision of demand response in these markets. We also model the effect of network tariffs and regulation on endogenous investment into process excess capacities, which are needed to provide load shifting. We find that fixed network tariffs based on peak-demand (demand charges) can be detrimental to the provision of demand response, especially to new investments in process capacity. For existing excess capacities, only high network tariffs inhibit demand response by limiting the optimal peak load below its physical limit. Marketing flexibility on the day-ahead market and in the reserves are substitutes for each other. The choice where to market flexibility is affected both by fixed peak-demand network tariffs and existing excess capacities. For endogenous investments, there are synergies between primary reserve participation and day-ahead flexibility provision, with the combination leading to increased capacity investments. In contrast, so-called interruptible load reserves, regular payments to industrial loads to be able to reduce electricity consumption at any point in time, incentivize a flat demand level. Consequently, such reserve markets reduce investments into additional flexibility capacities and often crowd out active participation in other markets.




Industrial Demand Response


Book Description

Incentives for industrial loads to provide demand response on day-ahead and reserve markets are affected both by network tariffs, as well as regulations on the provision of flexibility in different markets. This paper uses a numerical model of the chlor-alkali process with a storable intermediate good to investigate how these factors affect the provision of demand response in these markets. We also model the effect of network tariffs and regulation on endogenous investment into process excess capacities, which are needed to provide load shifting. We find that fixed network tariffs based on peak-demand (demand charges) can be detrimental to the provision of demand response, especially to new investments in process capacity. For existing excess capacities, only high network tariffs inhibit demand response by limiting the optimal peak load below its physical limit. Marketing flexibility on the day-ahead market and in the reserves are substitutes for each other. The choice where to market flexibility is affected both by fixed peak-demand network tariffs and existing excess capacities. For endogenous investments, there are synergies between primary reserve participation and day-ahead flexibility provision, with the combination leading to increased capacity investments. In contrast, so-called interruptible load reserves, regular payments to industrial loads to be able to reduce electricity consumption at any point in time, incentivize a flat demand level. Consequently, such reserve markets reduce investments into additional flexibility capacities and often crowd out active participation in other markets.




The Smart Grid


Book Description

The power system has often been cited as the greatest and most complex machine ever built, yet it is predominantly a mechanical system. Technologies and intelligent systems are now available that can significantly enhance the overall functionality of power distribution and make it ready to meet the needs of the 21st century. This book explains how sensors, communications technologies, computational ability, control, and feedback mechanisms can be effectively combined to create this new, continually adjusting "smart grid" system. It provides an understanding of both IntelliGridSM architecture and EnergyPortSM as well as how to integrate intelligent systems to achieve the goals of reliability, cost containment, energy efficiency in power production and delivery, and end-use energy efficiency.




Commercial and Industrial Demand Response Under Mandatory Time-Of-Use Electricity Pricing


Book Description

This paper is the first to evaluate the impact of a large-scale field deployment of mandatory time-of-use (TOU) pricing on the energy use of commercial and industrial firms. The regulation imposes higher prices during hours when electricity is generally more expensive to produce. We exploit a natural experiment that arises from the rules governing the program to present evidence that TOU pricing induced negligible change in overall usage, peak usage and peak load. As such, economic efficiency was not increased. Bill levels and volatility exhibit minor shifts, suggesting that concerns about increased expenditure and customer risk exposure have been overstated.




Opportunities, Barriers and Actions for Industrial Demand Response in California


Book Description

In 2006 the Demand Response Research Center (DRRC) formed an Industrial Demand Response Team to investigate opportunities and barriers to implementation of Automated Demand Response (Auto-DR) systems in California industries. Auto-DR is an open, interoperable communications and technology platform designed to: Provide customers with automated, electronic price and reliability signals; Provide customers with capability to automate customized DR strategies; Automate DR, providing utilities with dispatchable operational capability similar to conventional generation resources. This research began with a review of previous Auto-DR research on the commercial sector. Implementing Auto-DR in industry presents a number of challenges, both practical and perceived. Some of these include: the variation in loads and processes across and within sectors, resource-dependent loading patterns that are driven by outside factors such as customer orders or time-critical processing (e.g. tomato canning), the perceived lack of control inherent in the term 'Auto-DR', and aversion to risk, especially unscheduled downtime. While industry has demonstrated a willingness to temporarily provide large sheds and shifts to maintain grid reliability and be a good corporate citizen, the drivers for widespread Auto-DR will likely differ. Ultimately, most industrial facilities will balance the real and perceived risks associated with Auto-DR against the potential for economic gain through favorable pricing or incentives. Auto-DR, as with any ongoing industrial activity, will need to function effectively within market structures. The goal of the industrial research is to facilitate deployment of industrial Auto-DR that is economically attractive and technologically feasible. Automation will make DR: More visible by providing greater transparency through two-way end-to-end communication of DR signals from end-use customers; More repeatable, reliable, and persistent because the automated controls strategies that are 'hardened' and pre-programmed into facility's software and hardware; More affordable because automation can help reduce labor costs associated with manual DR strategies initiated by facility staff and can be used for long-term.




Smart Buildings, Smart Communities and Demand Response


Book Description

This book focuses on near-zero energy buildings (NZEBs), smart communities and microgrids. In this context, demand response (DR) is associated with significant environmental and economic benefits when looking at how electricity grids, communities and buildings can operate optimally. In DR, the consumer becomes a prosumer with an important active role in the exchange of energy on an hourly basis. DR is gradually gaining ground with respect to the reduction of peak loads, grid balancing and dealing with the volatility of renewable energy sources (RES). This transition calls for high environmental awareness and new tools or services that will improve the dynamic as well as secure multidirectional exchange of energy and data. Overall, DR is identified as an important field for technological and market innovations aligned with climate change mitigation policies and the transition to sustainable smart grids in the foreseeable future. Smart Buildings, Smart Communities and Demand Response provides an insight into various intrinsic aspects of DR potential, at the building and the community level.




Assessment of Industrial Load for Demand Response Across Western Interconnect


Book Description

Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.




Assessment of Industrial Load for Demand Response Across U.S. Regions of the Western Interconnect


Book Description

Demand response has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles for demand response that can provide more regional understanding and can be inserted into analysis software for further study.