Reducing the Threat of Improvised Explosive Device Attacks by Restricting Access to Explosive Precursor Chemicals


Book Description

Improvised explosive devices (IEDs) are a type of unconventional explosive weapon that can be deployed in a variety of ways, and can cause loss of life, injury, and property damage in both military and civilian environments. Terrorists, violent extremists, and criminals often choose IEDs because the ingredients, components, and instructions required to make IEDs are highly accessible. In many cases, precursor chemicals enable this criminal use of IEDs because they are used in the manufacture of homemade explosives (HMEs), which are often used as a component of IEDs. Many precursor chemicals are frequently used in industrial manufacturing and may be available as commercial products for personal use. Guides for making HMEs and instructions for constructing IEDs are widely available and can be easily found on the internet. Other countries restrict access to precursor chemicals in an effort to reduce the opportunity for HMEs to be used in IEDs. Although IED attacks have been less frequent in the United States than in other countries, IEDs remain a persistent domestic threat. Restricting access to precursor chemicals might contribute to reducing the threat of IED attacks and in turn prevent potentially devastating bombings, save lives, and reduce financial impacts. Reducing the Threat of Improvised Explosive Device Attacks by Restricting Access to Explosive Precursor Chemicals prioritizes precursor chemicals that can be used to make HMEs and analyzes the movement of those chemicals through United States commercial supply chains and identifies potential vulnerabilities. This report examines current United States and international regulation of the chemicals, and compares the economic, security, and other tradeoffs among potential control strategies.




Containing the Threat from Illegal Bombings


Book Description

In response to the rising concern of the American public over illegal bombings, the Bureau of Alcohol, Tobacco, and Firearms asked the National Research Council to examine possible mechanisms for reducing this threat. The committee examined four approaches to reducing the bombing threat: addition of detection markers to explosives for pre-blast detection, addition of identification taggants to explosives for post-blast identification of bombers, possible means to render common explosive materials inert, and placing controls on explosives and their precursors. The book makes several recommendations to reduce the number of criminal bombings in this country.




Chemistry of Explosives


Book Description

Revised and expanded to reflect new developments in the field, this book outlines the basic principles required to understand the chemical processes of explosives. The Chemistry of Explosives provides an overview of the history of explosives, taking the reader to future developments. The text on the classification of explosive materials contains much data on the physical parameters of primary and secondary explosives. The explosive processes of deflagration and detonation, including the theory of ‘hotspots’ for the detonation process, are introduced and many examples are provided in the detailed description on the thermochemistry of explosives. New material includes coverage of the latest explosive compositions, such as high temperature explosives, nitrocubanes, energetic polymers, plasticizers and insensitive munitions (IM). This concise, readable book is ideal for students and new graduates with no previous knowledge of explosive materials. With detailed information on a vast range of explosives in tabular form and an extensive bibliography, this book will also be useful to anyone needing succinct information on the subject.







Liquid Explosives


Book Description

The book drawing on the author’s nearly half a century of energetic materials research experience intends to systematically review the global researches on liquid explosives. The book focuses on the study of the conception, explosion mechanism, properties and preparation of liquid explosives. It provides a combination of theoretical knowledge and practical examples in a reader-friendly style. The book is likely to be interest of university researchers and graduate students in the fields of energetic materials, blasting engineering and mining.




Organic Chemistry of Explosives


Book Description

Organic Chemistry of Explosives is the first text to bring together the essential methods and routes used for the synthesis of organic explosives in a single volume. Assuming no prior knowledge, the book discusses everything from the simplest mixed acid nitration of toluene, to the complex synthesis of highly energetic caged nitro compounds. Reviews laboratory and industrial methods, which can be used to introduce aliphatic C-nitro, aromatic C-nitro, N-nitro, and nitrate ester functionality into organic compounds Discusses the advantages and disadvantages of each synthetic method or route, with scope, limitations, substrate compatibility and other important considerations Features numerous examples in the form of text, reaction diagrams, and tables.




High Energy Materials


Book Description

Authored by an insider with over 40 years of high energy materials (HEMs) experience in academia, industry and defense organizations, this handbook and ready reference covers all important HEMs from the 1950s to the present with their respective properties and intended purposes. Written at an attainable level for professionals, engineers and technicians alike, the book provides a comprehensive view of the current status and suggests further directions for research and development. An introductory chapter on the chemical and thermodynamic basics allows the reader to become acquainted with the fundamental features of explosives, before moving on to the important safety aspects in processing, handling, transportation and storage of high energy materials. With its collation of results and formulation strategies hitherto scattered in the literature, this should be on the shelf of every HEM researcher and developer.