Infiltration Measurements for Soil Hydraulic Characterization


Book Description

This book summarises the main results of many contributions from researchers worldwide who have used the water infiltration process to characterize soil in the field. Determining soil hydrodynamic properties is essential to interpret and simulate the hydrological processes of economic and environmental interest. This book can be used as a guide to soil hydraulic characterization and in addition it gives a complete description of the treated techniques, including an outline of the most significant research results, with the main points that still needing development and improvement.




Handbook of Global Optimization


Book Description

In 1995 the Handbook of Global Optimization (first volume), edited by R. Horst, and P.M. Pardalos, was published. This second volume of the Handbook of Global Optimization is comprised of chapters dealing with modern approaches to global optimization, including different types of heuristics. Topics covered in the handbook include various metaheuristics, such as simulated annealing, genetic algorithms, neural networks, taboo search, shake-and-bake methods, and deformation methods. In addition, the book contains chapters on new exact stochastic and deterministic approaches to continuous and mixed-integer global optimization, such as stochastic adaptive search, two-phase methods, branch-and-bound methods with new relaxation and branching strategies, algorithms based on local optimization, and dynamical search. Finally, the book contains chapters on experimental analysis of algorithms and software, test problems, and applications.




Soil Science


Book Description




Optimizing Stormwater Treatment Practices


Book Description

Optimizing Stormwater Treatment Practices: A Handbook of Assessment and Maintenance provides the information necessary for developing and operating an effective maintenance program for stormwater treatment. The book offers instructions on how to measure the level of performance of stormwater treatment practices directly and bases proposed maintenance schedules on actual performance and historical maintenance efforts and costs. The inspection methods, which are proven in the field and have been implemented successfully, are necessary as regulatory agencies are demanding evaluations of the performance of stormwater treatment practices. The authors have developed a three-tiered approach that offers readers a standard protocol for how to determine the effectiveness of stormwater treatment practices currently in place.




Applications of Soil Physics


Book Description

Applications of Soil Physics deals with the applications of soil physics and covers topics ranging from infiltration and surface runoff to groundwater drainage, evaporation from bare-surface soils, and uptake of soil moisture by plants. Water balance and energy balance in the field are also discussed, along with tillage and soil structure management. The development and extension of Penman's evaporation formula is also described. This book is comprised of 14 chapters and begins with a systematic description of the field-water cycle and its management, with emphasis on infiltration and runoff; redistribution and drainage; evaporation and transpiration; and irrigation and tillage. Subsequent chapters focus on transpiration from plant canopies; freezing phenomena in soils; scaling and similitude of soil-water phenomena; spatial variability of soil physical properties; and movement of solutes during infiltration into homogeneous soil. Concepts of soil-water availability to plants are considered, together with principles of irrigation management and the advantages and limitations of drip irrigation. This monograph is intended for upper-level undergraduate and graduate students of the environmental, engineering, and agronomic sciences.




Soil Hydrology for a Sustainable Land Management


Book Description

Soil hydrology determines the water–soil–plant interactions in the Earth’s system because porous medium acts as an interface within the atmosphere and lithosphere; regulates main processes such as runoff discharge, aquifer recharge, movement of water, and solutes into the soil; and ultimately the amount of water retained and available for plants growth. Soil hydrology can be strongly affected by land management. Therefore, investigations aimed at assessing the impact of land management changes on soil hydrology are necessary, especially to optimize water resources. This Special Issue collects 12 original contributions addressing the state-of-the-art advances in soil hydrology for sustainable land management. These contributions cover a wide range of topics including (i) the effects of land use change, (ii) water use efficiency, (iii) erosion risk, (iv) solute transport, and (v) new methods and devices for improved characterization of soil physical and hydraulic properties. They include both field and laboratory experiments as well as modelling studies. Different spatial scales, i.e., from field to regional scales, and a wide range of geographic regions are also covered. The collection of these manuscripts presented in this Special Issue provides a relevant knowledge contribution for effective saving water resources and sustainable land management.




Unsaturated Flow in Hydrologic Modeling


Book Description

This volume certainly is a Conference Proceedings, the Proceedings of the NATO Advanced Research Workshop (ARW) on "Unsaturated Flow in Hydrologic Modeling" held at "Les Villages du Soleil" near ArIes, France from June 13 to 17, 1988. Let me therefore acknowledge properly, at the very beginning, the gratitude of all the participants to the NATO Science Committee for its generous support and worthwhile goal of bringing together scientists of many countries to communicate and share their experiences. Particular thanks are extended to the director of the program, Dr. Luis Vega da Cunha for his interest and understanding. On the other hand this volume is also, and probably more so, a Textbook that fills a gap in the field of unsaturated flow. Many treatises on the subject present the theory in its different aspects. Hardly any explain in details how the different pieces can be put together to address realistic problems at the basin scale. The various invited contributions to the ARW were structured in a subject progression much as chapters are organized in a book. The intent of the ARW was to assess the current state of knowledge in "Unsaturated Flow" and its use in "Hydrologic Modeling Practice". In a sense the interest in fundamentals of unsaturated flow in this ARW was not just for the sake of knowledge but also and primarily for the sake of action. Can such fundamental knowledge be utilized for better management of the water resource? was the basic question.




Anthropogenic Aquifer Recharge


Book Description

The book is an overview of the diversity of anthropogenic aquifer recharge (AAR) techniques that use aquifers to store and treat water. It focusses on the processes and the hydrogeological and geochemical factors that affect their performance. This book is written from an applied perspective with a focus of taking advantage of global historical experiences, both positive and negative, as a guide to future implementation. Most AAR techniques are now mature technologies in that they have been employed for some time, their scientific background is well understood, and their initial operational challenges and associated solutions have been identified. However, opportunities exist for improved implementation and some recently employed and potential future innovations are presented. AAR which includes managed aquifer recharge (MAR) is a very important area of water resources management and there is no recent books that specifically and comprehensively addresses the subject.




Applied Soil Hydrology


Book Description

This state-of-the-art book clearly explains the basic principles of soil hydrology and the current knowledge in this field. It particularly highlights the estimation and application of measurements and evaluation of soil-hydrophysical characteristics using simulation models, with a focus on elucidating the basic hydrophysical characteristics of soil, such as soil water potential and hydraulic conductivity, as well as the methods of measurement. It also addresses topics such as stony soil, water repellent soils, and water movement modeling in those media. The book presents soil hydrology in a simple way, while quantitatively expressing the soil water state and movement. It clearly and precisely describes basic terms of soil hydrology with a minimum of mathematics. It also includes the latest research findings in the field as well as the basics of the mathematical modeling of water movement in the soil-plant-atmosphere system (SPAS), using original research results to illustrate these issues. This book is of interest to all scientists and professionals in soil hydrology, including beginners, as well as those interested and working in hydrology in general and soil hydrology in particular. In addition, it can also be used by specialists and students in related fields like agronomy, forestry, meteorology, hydrology, environmental engineering, environmental protection, and geography.




Soil Health Analysis, Set


Book Description

Volume 1 briefly reviews selected “Approaches to Soil Health Analysis” including a brief history of the concept, challenges and opportunities, meta-data and assessment, applications to forestry and urban land reclamation, and future soil health monitoring and evaluation approaches. Volume 2 focuses on “Laboratory Methods for Soil Health Analysis” including an overview and suggested analytical approaches intended to provide meaningful, comparable data so that soil health can be used to guide restoration and protection of our global soil resources.