Information Technologies and Mathematical Modelling. Queueing Theory and Applications


Book Description

This book constitutes revised selected papers of the 19th International Conference on Information Technologies and Mathematical Modelling, ITMM 2020, named after A.F. Terpugov, held in Tomsk, Russia, in December 2020. The 31 full papers presented in this volume were carefully reviewed and selected from 82 submissions. The conference covers various aspects of information technologies, focusing on queueing theory, stochastic processes, Markov processes, renewal theory, network performance equation and network protocols.




Information Technologies and Mathematical Modelling


Book Description

This book constitutes the refereed proceedings of the 13th International Scientific Conference on Information Technologies and Mathematical Modeling, named after A.F. Terpugov, ITMM 2014, Anzhero-Sudzhensk, Russia, held in Anzhero-Sudzhensk, Russia, in November 2014. The 50 full papers included in this volume were carefully reviewed and selected from 254 submissions. The papers focus on probabilistic methods and models, queueing theory, telecommunication systems, and software engineering.




Queueing Theory 1


Book Description

The aim of this book is to reflect the current cutting-edge thinking and established practices in the investigation of queueing systems and networks. This first volume includes ten chapters written by experts well-known in their areas. The book studies the analysis of queues with interdependent arrival and service times, characteristics of fluid queues, modifications of retrial queueing systems and finite-source retrial queues with random breakdowns, repairs and customers' collisions. Some recent tendencies in the asymptotic analysis include the average and diffusion approximation of Markov queueing systems and networks, the diffusion and Gaussian limits of multi-channel queueing networks with rather general input flow, and the analysis of two-time-scale nonhomogenous Markov chains using the large deviations principle. The book also analyzes transient behavior of infinite-server queueing models with a mixed arrival process, the strong stability of queueing systems and networks, and applications of fast simulation methods for solving high-dimension combinatorial problems.




Queueing Theory 2


Book Description

The aim of this book is to reflect the current cutting-edge thinking and established practices in the investigation of queueing systems and networks. This second volume includes eight chapters written by experts wellknown in their areas. The book conducts a stability analysis of certain types of multiserver regenerative queueing systems; a transient evaluation of Markovian queueing systems, focusing on closed-form distributions and numerical techniques; analysis of queueing models in service sectors using analytical and simulation approaches; plus an investigation of probability distributions in queueing models and their use in economics, industry, demography and environmental studies. This book also considers techniques for the control of information in queueing systems and their impact on strategic customer behavior, social welfare and the revenue of monopolists. In addition, applications of maximum entropy methods of inference for the analysis of a stable M/G/1 queue with heavy tails, and inventory models with positive service time - including perishable items and stock supplied using various algorithmic control policies ((s; S); (r;Q), etc.).




Information Technologies and Mathematical Modelling. Queueing Theory and Applications


Book Description

This book constitutes the refereed proceedings of the 21st International Conference on Information Technologies and Mathematical Modelling. Queueing Theory and Applications, ITMM 2022, held in Karshi, Uzbekistan, during October 25–29, 2022. The 19 full papers included in this book were carefully reviewed and selected from 89 submissions. The papers are devoted to new results in queueing theory and its applications. Its target audience includes specialists in probabilistic theory, random processes, mathematical modeling as well as engineers engaged in logical and technical design and operational management of data processing systems, communication, and computer networks./div




An Introduction to Queueing Theory


Book Description

This introductory textbook is designed for a one-semester course on queueing theory that does not require a course on stochastic processes as a prerequisite. By integrating the necessary background on stochastic processes with the analysis of models, the work provides a sound foundational introduction to the modeling and analysis of queueing systems for a broad interdisciplinary audience of students in mathematics, statistics, and applied disciplines such as computer science, operations research, and engineering. This edition includes additional topics in methodology and applications. Key features: • An introductory chapter including a historical account of the growth of queueing theory in more than 100 years. • A modeling-based approach with emphasis on identification of models • Rigorous treatment of the foundations of basic models commonly used in applications with appropriate references for advanced topics. • A chapter on matrix-analytic method as an alternative to the traditional methods of analysis of queueing systems. • A comprehensive treatment of statistical inference for queueing systems. • Modeling exercises and review exercises when appropriate. The second edition of An Introduction of Queueing Theory may be used as a textbook by first-year graduate students in fields such as computer science, operations research, industrial and systems engineering, as well as related fields such as manufacturing and communications engineering. Upper-level undergraduate students in mathematics, statistics, and engineering may also use the book in an introductory course on queueing theory. With its rigorous coverage of basic material and extensive bibliography of the queueing literature, the work may also be useful to applied scientists and practitioners as a self-study reference for applications and further research. "...This book has brought a freshness and novelty as it deals mainly with modeling and analysis in applications as well as with statistical inference for queueing problems. With his 40 years of valuable experience in teaching and high level research in this subject area, Professor Bhat has been able to achieve what he aimed: to make [the work] somewhat different in content and approach from other books." - Assam Statistical Review of the first edition




Information Technologies and Mathematical Modelling. Queueing Theory and Applications


Book Description

This book constitutes the proceedings of the 18th International Conference on Information Technologies and Mathematical Modelling, ITMM 2019, named after A.F. Terpugov, held in Saratov, Russia, in June 2019. The 25 full papers presented in this volume were carefully reviewed and selected from 72 submissions. The conference covers various aspects of information technologies, focusing on queueing theory, stochastic processes, Markov processes, renewal theory, network performance equation and network protocols.







Fundamentals of Queueing Theory


Book Description

The definitive guide to queueing theory and its practical applications—features numerous real-world examples of scientific, engineering, and business applications Thoroughly updated and expanded to reflect the latest developments in the field, Fundamentals of Queueing Theory, Fifth Edition presents the statistical principles and processes involved in the analysis of the probabilistic nature of queues. Rather than focus narrowly on a particular application area, the authors illustrate the theory in practice across a range of fields, from computer science and various engineering disciplines to business and operations research. Critically, the text also provides a numerical approach to understanding and making estimations with queueing theory and provides comprehensive coverage of both simple and advanced queueing models. As with all preceding editions, this latest update of the classic text features a unique blend of the theoretical and timely real-world applications. The introductory section has been reorganized with expanded coverage of qualitative/non-mathematical approaches to queueing theory, including a high-level description of queues in everyday life. New sections on non-stationary fluid queues, fairness in queueing, and Little’s Law have been added, as has expanded coverage of stochastic processes, including the Poisson process and Markov chains. • Each chapter provides a self-contained presentation of key concepts and formulas, to allow readers to focus independently on topics relevant to their interests • A summary table at the end of the book outlines the queues that have been discussed and the types of results that have been obtained for each queue • Examples from a range of disciplines highlight practical issues often encountered when applying the theory to real-world problems • A companion website features QtsPlus, an Excel-based software platform that provides computer-based solutions for most queueing models presented in the book. Featuring chapter-end exercises and problems—all of which have been classroom-tested and refined by the authors in advanced undergraduate and graduate-level courses—Fundamentals of Queueing Theory, Fifth Edition is an ideal textbook for courses in applied mathematics, queueing theory, probability and statistics, and stochastic processes. This book is also a valuable reference for practitioners in applied mathematics, operations research, engineering, and industrial engineering.




Information Technologies and Mathematical Modelling. Queueing Theory and Applications


Book Description

This book constitutes the refereed proceedings of the 21st International Conference on Information Technologies and Mathematical Modelling. Queueing Theory and Applications, ITMM 2022, held in Karshi, Uzbekistan, during October 25-29, 2022. The 19 full papers included in this book were carefully reviewed and selected from 89 submissions. The papers are devoted to new results in queueing theory and its applications. Its target audience includes specialists in probabilistic theory, random processes, mathematical modeling as well as engineers engaged in logical and technical design and operational management of data processing systems, communication, and computer networks.