Fundamentals of Inkjet Printing


Book Description

From droplet formation to final applications, this practical book presents the subject in a comprehensive and clear form, using only content derived from the latest published results. Starting at the very beginning, the topic of fluid mechanics is explained, allowing for a suitable regime for printing inks to subsequently be selected. There then follows a discussion on different print-head types and how to form droplets, covering the behavior of droplets in flight and upon impact with the substrate, as well as the droplet's wetting and drying behavior at the substrate. Commonly observed effects, such as the coffee ring effect, are included as well as printing in the third dimension. The book concludes with a look at what the future holds. As a unique feature, worked examples both at the practical and simulation level, as well as case studies are included. As a result, students and engineers in R&D will come to fully understand the complete process of inkjet printing.




Inkjet Applications


Book Description

Now for the first time, you too can unlock the secrets of Thermal Inkjet printing. INKJET APPLICATIONS will show you how to design and build circuits that drive the HP 51604A inkjet cartridge. Most any microcontroller can be used, including the BASIC Stamp 2 and Parallax SX. Circuits include single nozzle firing and alphanumeric printing (fonts included). Non-typical applications are outlined as well, like "Typer" and "Paint-Bot" - robots that print text or they can "shoot" an opponent with ink drops - up to four inches away. INKJET APPLICATIONS was written by Matt Gilliland, author of the popular "Microcontroller Application Cookbook" series. The Foreword was written by Frank Cloutier, and tells the story of how Thermal Inkjet technology was developed. Mr. Cloutier was the leader of the small team that persued this "interesting discovery" at HP labs.




The Chemistry Of Inkjet Inks


Book Description

Modern printing is based on digitizing information and then representing it on a substrate, such as paper, pixel by pixel. One of the most common methods of digital printing is through inkjet printers. The process of inkjet printing is very complicated, and the ink used must meet certain chemical and physicochemical requirements including those related to storage stability; jetting performance; color management; wetting; and adhesion on substrates. Obviously, these requirements — which represent different scientific disciplines such as colloid chemistry, chemical engineering, and physics — indicate the need for an interdisciplinary book that will cover all aspects of making and utilizing inkjet inks.This book provides basic and essential information on the important parameters which determine ink performance. It covers not only the conventional use of inkjet technology on graphic applications, but also the extension of this method to print various functional materials, such as the use of conductive inks to print light-emitting diodes (LEDs) and three-dimensional structures. Thus, the book will serve a large community: industrial chemists who deal with ink formulations and synthesis of chemicals for inks; chemical engineers and physicists who deal with the rheological and flow properties of inks; and researchers in academic institutes who seek to develop novel applications based on inkjet printing of new materials.




Handbook of Industrial Inkjet Printing


Book Description

Unique in its integration of individual topics to achieve a full-system approach, this book addresses all the aspects essential for industrial inkjet printing. After an introduction listing the industrial printing techniques available, the text goes on to discuss individual topics, such as ink, printheads and substrates, followed by metrology techniques that are required for reliable systems. Three iteration cycles are then described, including the adaptation of the ink to the printhead, the optimization of the ink to the substrate and the integration of machine manufacturing, monitoring, and data handling, among others. Finally, the book summarizes a number of case studies and success stories from selected areas, including graphics, printed electronics, and 3D printing as well a list of ink suppliers, printhead manufacturers and integrators. Practical hints are included throughout for a direct hands-on experience. Invaluable for industrial users and academics, whether ink developers or mechanical engineers, and working in areas ranging from metrology to intellectual property.




Reactive Inkjet Printing


Book Description

Reactive inkjet printing uses an inkjet printer to dispense one or more reactants onto a substrate to generate a physical or chemical reaction to form a product in situ. Thus, unlike traditional inkjet printing, the printed film chemistry differs to that of the initial ink droplets. The appeal of reactive inkjet printing as a chemical synthesis tool is linked to its ability to produce droplets whose size is both controllable and predictable, which means that the individual droplets can be thought of as building blocks where droplets can be added to the substrate in a high precision format to give good control and predictability over the chemical reaction. The book starts by introducing the concept of using reactive inkjet printing as a building block for making materials. Aspects such as the behaviour of printed droplets on substrate and their mixing is discussed in the first chapters. The following chapters then discuss different applications of the technique in areas including additive manufacturing and silk production, production of materials used in solar cells, printed electronics, dentistry and tissue engineering. Edited by two leading experts, Reactive Inkjet Printing: A Chemical Synthesis Tool provides a comprehensive overview of this technique and its use in fabricating functional materials for health and energy applications. The book will appeal to advanced level students in materials science.




Inkjet-based Micromanufacturing


Book Description

Inkjet-based Micromanufacturing Inkjet technology goes way beyond putting ink on paper: it enables simpler, faster and more reliable manufacturing processes in the fields of micro- and nanotechnology. Modern inkjet heads are per se precision instruments that deposit droplets of fluids on a variety of surfaces in programmable, repeating patterns, allowing, after suitable modifications and adaptations, the manufacturing of devices such as thin-film transistors, polymer-based displays and photovoltaic elements. Moreover, inkjet technology facilitates the large-scale production of flexible RFID transponders needed, eg, for automated logistics and miniaturized sensors for applications in health surveillance. The book gives an introduction to inkjet-based micromanufacturing, followed by an overview of the underlying theories and models, which provides the basis for a full understanding and a successful usage of inkjet-based methods in current microsystems research and development Overview of Inkjet-based Micromanufacturing: Thermal Inkjet Theory and Modeling Post-Printing Processes for Inorganic Inks for Plastic Electronics Applications Inkjet Ink Formulations Inkjet Fabrication of Printed Circuit Boards Antennas for Radio Frequency Identification Tags Inkjet Printing for MEMS




Inkjet Printing in Industry


Book Description

This handbook provides an indispensable overview of all essential aspects of industrial-scale inkjet printing. Inkjet printing, as a scalable deposition technique, has grown in popularity due to its being additive, digital, and contact-free. Given these advantages, the technology can now be used in stable and mature industrial-scale applications. As the mechanisms for inkjet printing have improved, so too have the versatility and applicability of this machinery within industry. The handbook's coverage includes inks, printhead technology, substrates, metrology, software, as well as machine integration and pre- and post-processing approaches. This information is complemented by an overview of printing strategies and application development and covers technological advances in packaging, security printing, printed electronics, robotics, 3D printing, and bioprinting. Important topics like standardisation, regulatory requirements, ecological aspects, and patents. Readers will find: * The most comprehensive work on the topic with over 75 chapters and more than 1,500 pages relating to inkjet printing technology * The inkjet-printing expertise of corporate development engineers and academic researchers in one manual * A hands-on approach utilizing case studies, success stories, and practical hints that allow the reader direct, first-hand experience with the power of inkjet printing technology. The ideal resource for material scientists, engineering scientists in industry, electronic engineers, and surface and solid-state chemists,"Inkjet Printing in Industry" is an all-in-one tool for modern professionals and researchers alike. This handbook provides an indispensable overview of all essential aspects of industrial-scale inkjet printing. Inkjet printing, as a scalable deposition technique, has grown in popularity due to its being additive, digital, and contact-free. Given these advantages, the technology can now be used in stable and mature industrial-scale applications. As the mechanisms for inkjet printing have improved, so too have the versatility and applicability of this machinery within industry. The handbook's coverage includes inks, printhead technology, substrates, metrology, software, as well as machine integration and pre- and post-processing approaches. This information is complemented by an overview of printing strategies and application development and covers technological advances in packaging, security printing, printed electronics, robotics, 3D printing, and bioprinting. Important topics like standardisation, regulatory requirements, ecological aspects, and patents. Readers will find: * The most comprehensive work on the topic with over 75 chapters and more than 1,500 pages relating to inkjet printing technology * The inkjet-printing expertise of corporate development engineers and academic researchers in one manual * A hands-on approach utilizing case studies, success stories, and practical hints that allow the reader direct, first-hand experience with the power of inkjet printing technology. The ideal resource for material scientists, engineering scientists in industry, electronic engineers, and surface and solid-state chemists,"Inkjet Printing in Industry" is an all-in-one tool for modern professionals and researchers alike.




Inkjet Technology for Digital Fabrication


Book Description

Whilst inkjet technology is well-established on home and small office desktops and is now having increasing impact in commercial printing, it can also be used to deposit materials other than ink as individual droplets at a microscopic scale. This allows metals, ceramics, polymers and biological materials (including living cells) to be patterned on to substrates under precise digital control. This approach offers huge potential advantages for manufacturing, since inkjet methods can be used to generate structures and functions which cannot be attained in other ways. Beginning with an overview of the fundamentals, this bookcovers the key components, for example piezoelectric print-heads and fluids for inkjet printing, and the processes involved. It goes on to describe specific applications, e.g. MEMS, printed circuits, active and passive electronics, biopolymers and living cells, and additive manufacturing. Detailed case studies are included on flat-panel OLED displays, RFID (radio-frequency identification) manufacturing and tissue engineering, while a comprehensive examination of the current technologies and future directions of inkjet technology completes the coverage. With contributions from both academic researchers and leading names in the industry, Inkjet Technology for Digital Fabrication is a comprehensive resource for technical development engineers, researchers and students in inkjet technology and system development, and will also appeal to researchers in chemistry, physics, engineering, materials science and electronics.




Silver Nano/microparticles: Modification and Applications


Book Description

Nano/micro-size particles are widely applied in various fields. Among the various particles, silver particles are considered among the most prominent nanomaterials in the biomedical and industrial sectors because of their favorable physical, chemical, and biological characteristics. Thus, numerous studies have been conducted to evaluate their properties and utilize them in various applications, such as diagnostics, anti-bacterial and anti-cancer therapeutics, and optoelectronics. The properties of silver particles are strongly influenced by their size, morphological shape, and surface characteristics, which can be modified by diverse synthetic methods, reducing agents, and stabilizers. This Special Issue provides a range of original contributions detailing the synthesis, modification, properties, and applications of silver materials. Nine outstanding papers describing examples of the most recent advances in silver nano/microparticles are included. Silver nano/micro-size particles have many potential advantages as next-generation materials in various areas, including nanomedicine. This Special Issue might be helpful to understand the value of silver particles in the biomedical and industrial fields




21st Century Nanoscience – A Handbook


Book Description

This up-to-date reference is the most comprehensive summary of the field of nanoscience and its applications. It begins with fundamental properties at the nanoscale and then goes well beyond into the practical aspects of the design, synthesis, and use of nanomaterials in various industries. It emphasizes the vast strides made in the field over the past decade – the chapters focus on new, promising directions as well as emerging theoretical and experimental methods. The contents incorporate experimental data and graphs where appropriate, as well as supporting tables and figures with a tutorial approach.