Inpainting and Denoising Challenges


Book Description

The problem of dealing with missing or incomplete data in machine learning and computer vision arises in many applications. Recent strategies make use of generative models to impute missing or corrupted data. Advances in computer vision using deep generative models have found applications in image/video processing, such as denoising, restoration, super-resolution, or inpainting. Inpainting and Denoising Challenges comprises recent efforts dealing with image and video inpainting tasks. This includes winning solutions to the ChaLearn Looking at People inpainting and denoising challenges: human pose recovery, video de-captioning and fingerprint restoration. This volume starts with a wide review on image denoising, retracing and comparing various methods from the pioneer signal processing methods, to machine learning approaches with sparse and low-rank models, and recent deep learning architectures with autoencoders and variants. The following chapters present results from the Challenge, including three competition tasks at WCCI and ECML 2018. The top best approaches submitted by participants are described, showing interesting contributions and innovating methods. The last two chapters propose novel contributions and highlight new applications that benefit from image/video inpainting.




Pattern Recognition


Book Description

This book constitutes the proceedings of the 12th Mexican Conference on Pattern Recognition, MCPR 2020, which was due to be held in Morelia, Mexico, in June 2020. The conference was held virtually due to the COVID-19 pandemic. The 31 papers presented in this volume were carefully reviewed and selected from 67 submissions. They were organized in the following topical sections: pattern recognition techniques; image processing and analysis; computer vision; industrial and medical applications of pattern recognition; natural language processing and recognition; artificial intelligence techniques and recognition.




Advances in Electronics, Communication and Computing


Book Description

This book is a compilation of research work in the interdisciplinary areas of electronics, communication, and computing. This book is specifically targeted at students, research scholars and academicians. The book covers the different approaches and techniques for specific applications, such as particle-swarm optimization, Otsu’s function and harmony search optimization algorithm, triple gate silicon on insulator (SOI)MOSFET, micro-Raman and Fourier Transform Infrared Spectroscopy (FTIR) analysis, high-k dielectric gate oxide, spectrum sensing in cognitive radio, microstrip antenna, Ground-penetrating radar (GPR) with conducting surfaces, and digital image forgery detection. The contents of the book will be useful to academic and professional researchers alike.




Data-driven Models in Inverse Problems


Book Description

Advances in learning-based methods are revolutionizing several fields in applied mathematics, including inverse problems, resulting in a major paradigm shift towards data-driven approaches. This volume, which is inspired by this cutting-edge area of research, brings together contributors from the inverse problem community and shows how to successfully combine model- and data-driven approaches to gain insight into practical and theoretical issues.




Non-Smooth and Complementarity-Based Distributed Parameter Systems


Book Description

Many of the most challenging problems in the applied sciences involve non-differentiable structures as well as partial differential operators, thus leading to non-smooth distributed parameter systems. This edited volume aims to establish a theoretical and numerical foundation and develop new algorithmic paradigms for the treatment of non-smooth phenomena and associated parameter influences. Other goals include the realization and further advancement of these concepts in the context of robust and hierarchical optimization, partial differential games, and nonlinear partial differential complementarity problems, as well as their validation in the context of complex applications. Areas for which applications are considered include optimal control of multiphase fluids and of superconductors, image processing, thermoforming, and the formation of rivers and networks. Chapters are written by leading researchers and present results obtained in the first funding phase of the DFG Special Priority Program on Nonsmooth and Complementarity Based Distributed Parameter Systems: Simulation and Hierarchical Optimization that ran from 2016 to 2019.




Novel Diffusion-Based Models for Image Restoration and Interpolation


Book Description

This book covers two essential PDE-based image processing fields: image denoising and image inpainting. It describes the state-of-the-art PDE-based image restoration and interpolation (inpainting) techniques, focusing on the latest advances in PDE-based image processing and analysis, and explores novel techniques involving diffusion-based models and variational schemes. The PDE and variational schemes clearly outperform the conventional approaches in these areas, and can successfully remove image noise and reconstruct missing or highly degraded regions, while preserving the essential features and avoiding unintended effects. The book addresses researchers and graduate students, but is also well suited for professionals in both the mathematics and electrical engineering domains, as it provides rigorous mathematical investigations of the image processing models described, as well as mathematical treatments for the numerical approximation schemes of these differential models.




Focus on Bio-Image Informatics


Book Description

This volume of Advances Anatomy Embryology and Cell Biology focuses on the emerging field of bio-image informatics, presenting novel and exciting ways of handling and interpreting large image data sets. A collection of focused reviews written by key players in the field highlights the major directions and provides an excellent reference work for both young and experienced researchers.




Image Processing and Analysis


Book Description

At no other time in human history have the influence and impact of image processing on modern society, science, and technology been so explosive. Image processing has become a critical component in contemporary science and technology and has many important applications. This book develops the mathematical foundation of modern image processing and low-level computer vision, and presents a general framework from the analysis of image structures and patterns to their processing. The core mathematical and computational ingredients of several important image processing tasks are investigated. The book bridges contemporary mathematics with state-of-the-art methodologies in modern image processing while organizing the vast contemporary literature into a coherent and logical structure.




Parallel Operator Splitting Algorithms with Application to Imaging Inverse Problems


Book Description

Image denoising, image deblurring, image inpainting, super-resolution, and compressed sensing reconstruction have important application value in engineering practice, and they are also the hot frontiers in the field of image processing. This book focuses on the numerical analysis of ill condition of imaging inverse problems and the methods of solving imaging inverse problems based on operator splitting. Both algorithmic theory and numerical experiments have been addressed. The book is divided into six chapters, including preparatory knowledge, ill-condition numerical analysis and regularization method of imaging inverse problems, adaptive regularization parameter estimation, and parallel solution methods of imaging inverse problem based on operator splitting. Although the research methods in this book take image denoising, deblurring, inpainting, and compressed sensing reconstruction as examples, they can also be extended to image processing problems such as image segmentation, hyperspectral decomposition, and image compression. This book can benefit teachers and graduate students in colleges and universities, or be used as a reference for self-study or further study of image processing technology engineers.