Insights Into Evolution and Adaptation Using Computational Methods and Next Generation Sequencing


Book Description

Historically, much of the research in evolutionary biology and population genetics has involved analysis at the level of either a single locus or a few number thereof. However, Next Generation sequencing technology has opened the floodgates with respect to both the sheer volume and quality of sequence data that researchers have long needed to address and answer long-standing questions in their fields. Scientists are now, by and large, no longer hampered in their efforts by technological hurdles to obtain data, but are in fact facing the problem of how best to use the vast amount of data that are accumulating at an ever-increasing rate. This is a good problem to have. The following research described in this dissertation is an attempt to derive answers to questions in the fields of population genetics and evolutionary biology that, until recently, have been either intractable or, at best, extremely difficult to address. In the first chapter I provide an introduction and a brief historical look at the research efforts that have proceeded my own. In the second chapter I describe how modern sequencing methods and computational analysis can be used to study, analyze, and answer evolutionary questions about the non-model organism, Enallagma hageni, in order to 1) determine this organism's phylogenetic position within Arthropoda, 2) provide answers and insight into the evolutionary history of the protein-encoding genes in the Enallagma transcriptome, and 3) give functional annotation to these expressed proteins. In the third chapter I examine how natural selection acts on the genome and derive a method that can accurately determine the evolutionary cause of nucleotide fixations, having occurred either through positive selection or neutral processes. I then apply the methodology to North American populations of Drosophila melanogaster, providing further evidence as to how adaptive evolution proceeds in a newly established population. This is an important question, for though there have been multiple approaches devised to determine the targets and modes of evolution in the genome, to date there has not emerged a definitive method which can determine both the location and type of a selective process, and as a result, the picture of how and where adaptive evolution proceeds in the genome has remained opaque. In the forth chapter I examine how levels of natural selection within the genome have the potential to inhibit the ability to accurately learn population demographic history. Using a number of modern algorithms and extensive simulations, I first examine whether or not demographic histories that are learned under simple biological assumptions will yield accurate results when the actual data itself does not adhere to these assumptions. Further, I go on to examine more complicated models of demographic history, looking specifically at how positive selection biases inference, which directions these biases occur, and at what levels of selection do inference methods fail to be robust. Finally, I describe potential evolutionary scenarios where these inference methods may be more prone to fail, as well as methods which might mitigate positive selection's effects, thus allowing for more accurate histories to be inferred. The work contained in this dissertation, at the broadest scale, is an effort to marry state-of-the-art techniques in statistics, computer science, and machine learning algorithms to the technological advances of next generation sequencing; the potent combination of these technologies has provided a means with which to derive answers to multiple, long-standing questions in population genetics and evolutionary biology.







Evolution as Computation


Book Description

The study of the genetic basis for evolution has flourished in this century, as well as our understanding of the evolvability and programmability of biological systems. Genetic algorithms meanwhile grew out of the realization that a computer program could use the biologically-inspired processes of mutation, recombination, and selection to solve hard optimization problems. Genetic and evolutionary programming provide further approaches to a wide variety of computational problems. A synthesis of these experiences reveals fundamental insights into both the computational nature of biological evolution and processes of importance to computer science. Topics include biological models of nucleic acid information processing and genome evolution; molecules, cells, and metabolic circuits that compute logical relationships; the origin and evolution of the genetic code; and the interface with genetic algorithms and genetic and evolutionary programming.




Recent Advances in Simulated Evolution and Learning


Book Description

Inspired by the Darwinian framework of evolution through natural selection and adaptation, the field of evolutionary computation has been growing very rapidly, and is today involved in many diverse application areas. This book covers the latest advances in the theories, algorithms, and applications of simulated evolution and learning techniques. It provides insights into different evolutionary computation techniques and their applications in domains such as scheduling, control and power, robotics, signal processing, and bioinformatics. The book will be of significant value to all postgraduates, research scientists and practitioners dealing with evolutionary computation or complex real-world problems. This book has been selected for coverage in: . OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). OCo CC Proceedings OCo Engineering & Physical Sciences. Sample Chapter(s). Chapter 1: Co-Evolutionary Learning in Strategic Environments (231 KB). Contents: Evolutionary Theory: Using Evolution to Learn User Preferences (S Ujjin & P J Bentley); Evolutionary Learning Strategies for Artificial Life Characters (M L Netto et al.); The Influence of Stochastic Quality Functions on Evolutionary Search (B Sendhoff et al.); A Real-Coded Cellular Genetic Algorithm Inspired by PredatorOCoPrey Interactions (X Li & S Sutherland); Automatic Modularization with Speciated Neural Network Ensemble (V R Khare & X Yao); Evolutionary Applications: Image Classification using Particle Swarm Optimization (M G Omran et al.); Evolution of Fuzzy Rule Based Controllers for Dynamic Environments (J Riley & V Ciesielski); A Genetic Algorithm for Joint Optimization of Spare Capacity and Delay in Self-Healing Network (S Kwong & H W Chong); Joint Attention in the Mimetic Context OCo What is a OC Mimetic SameOCO? (T Shiose et al.); Time Series Forecast with Elman Neural Networks and Genetic Algorithms (L X Xu et al.); and other articles. Readership: Upper level undergraduates, graduate students, academics, researchers and industrialists in artificial intelligence, evolutionary computation, fuzzy logic and neural networks."




Adaptation


Book Description

The study of evolutionary adaptation returns to the center stage of biology with this important volume. This innovative treatise discusses new developments in adaptation, with new methods, and new theoretical foundations, achievements, and prospects for a rich intellectual future. It is an insightful reintroduction to the themes that Darwin and his successors regarded as central to any profound understanding of biology.




Introduction to Computational Biology


Book Description

Written with the advanced undergraduate in mind, this book introduces into the field of Bioinformatics. The authors explain the computational and conceptional background to the analysis of large-scale sequence data. Many of the corresponding analysis methods are rooted in evolutionary thinking, which serves as a common thread throughout the book. The focus is on methods of comparative genomics and subjects covered include: alignments, gene finding, phylogeny, and the analysis of single nucleotide polymorphisms (SNPs). The volume contains exercises, questions & answers to selected problems.




Algorithms for Next-Generation Sequencing


Book Description

Advances in sequencing technology have allowed scientists to study the human genome in greater depth and on a larger scale than ever before – as many as hundreds of millions of short reads in the course of a few days. But what are the best ways to deal with this flood of data? Algorithms for Next-Generation Sequencing is an invaluable tool for students and researchers in bioinformatics and computational biology, biologists seeking to process and manage the data generated by next-generation sequencing, and as a textbook or a self-study resource. In addition to offering an in-depth description of the algorithms for processing sequencing data, it also presents useful case studies describing the applications of this technology.




Evolutionary Computation with Intelligent Systems


Book Description

This book focuses on cutting-edge innovations and core theories, principles, and algorithms applicable to a wide area. Real-life applications, case studies, and examples are included along with emerging trends, design, and optimized solutions pivoting around the needs of Society 5.0. Evolutionary Computation with Intelligent Systems: A Multidisciplinary Approach to Society 5.0 provides a holistic view of evolutionary computation techniques including principles, procedures, and future applications with real-life examples. The book comprehensively explains evolutionary computation, design, principles, development trends, and optimization and describes how it can transform the operating context of the organization. It exemplifies the potential of evolutionary computation for the next generation and the role of cloud computing in shaping Society 5.0. It also provides insight into various platforms, paradigms, techniques, and tools used in diverse fields. This book appeals to a variety of readers such as academicians, researchers, research scholars, and postgraduates.




Next Generation Sequencing


Book Description

Next generation sequencing (NGS) has surpassed the traditional Sanger sequencing method to become the main choice for large-scale, genome-wide sequencing studies with ultra-high-throughput production and a huge reduction in costs. The NGS technologies have had enormous impact on the studies of structural and functional genomics in all the life sciences. In this book, Next Generation Sequencing Advances, Applications and Challenges, the sixteen chapters written by experts cover various aspects of NGS including genomics, transcriptomics and methylomics, the sequencing platforms, and the bioinformatics challenges in processing and analysing huge amounts of sequencing data. Following an overview of the evolution of NGS in the brave new world of omics, the book examines the advances and challenges of NGS applications in basic and applied research on microorganisms, agricultural plants and humans. This book is of value to all who are interested in DNA sequencing and bioinformatics across all fields of the life sciences.




Methods and Models for the Analysis of Genetic Variation Across Species Using Large-scale Genomic Data


Book Description

Understanding how different evolutionary processes shape genetic variation within and between species is an important question in population genetics. The advent of next generation sequencing has allowed for many theories and hypotheses to be tested explicitly with data. However, questions such as what evolutionary processes affect neutral divergence (DNA differences between species) or genetic variation in different regions of the genome (such as on autosomes versus sex chromosomes) or how many genetic variants contribute to complex traits are still outstanding. In this dissertation, I utilized different large-scale genomic datasets and developed statistical methods to determine the role of natural selection on genetic variation between species, sex-biased evolutionary processes on shaping patterns of genetic variation on the X chromosome and autosomes, and how population history, mutation, and natural selection interact to control complex traits. First, I used genome-wide divergence data between multiple pairs of species ranging in divergence time to show that natural selection has reduced divergence at neutral sites that are linked to those under direct selection. To determine explicitly whether and to what extent linked selection and/or mutagenic recombination could account for the pattern of neutral divergence across the genome, I developed a statistical method and applied it to human-chimp neutral divergence dataset. I showed that a model including both linked selection and mutagenic recombination resulted in the best fit to the empirical data. However, the signal of mutagenic recombination could be coming from biased gene conversion. Comparing genetic diversity between the X chromosome and the autosomes could provide insights into whether and how sex-biased processes have affected genetic variation between different genomic regions. For example, X/A diversity ratio greater than neutral expectation could be due to more X chromosomes than expected and could be a result of mating practices such as polygamy where there are more reproducing females than males. I next utilized whole-genome sequences from dogs and wolves and found that X/A diversity is lower than neutral expectation in both dogs and wolves in ancient time-scales, arguing for evolutionary processes resulting in more males reproducing compared to females. However, within breed dogs, patterns of population differentiation suggest that there have been more reproducing females, highlighting effects from breeding practices such as popular sire effect where one male can father many offspring with multiple females. In medical genetics, a complete understanding of the genetic architecture is essential to unravel the genetic basis of complex traits. While genome wide association studies (GWAS) have discovered thousands of trait-associated variants and thus have furthered our understanding of the genetic architecture, key parameters such as the number of causal variants and the mutational target size are still under-studied. Further, the role of natural selection in shaping the genetic architecture is still not entirely understood. In the last chapter, I developed a computational method called InGeAr to infer the mutational target size and explore the role of natural selection on affecting the variant's effect on the trait. I found that the mutational target size differs from trait to trait and can be large, up to tens of megabases. In addition, purifying selection is coupled with the variant's effect on the trait. I discussed how these results support the omnigenic model of complex traits. In summary, in this dissertation, I utilized different types of large genomic dataset, from genome-wide divergence data to whole genome sequence data to GWAS data to develop models and statistical methods to study how different evolutionary processes have shaped patterns of genetic variation across the genome.