Instance-Specific Algorithm Configuration


Book Description

This book presents a modular and expandable technique in the rapidly emerging research area of automatic configuration and selection of the best algorithm for the instance at hand. The author presents the basic model behind ISAC and then details a number of modifications and practical applications. In particular, he addresses automated feature generation, offline algorithm configuration for portfolio generation, algorithm selection, adaptive solvers, online tuning, and parallelization. The author's related thesis was honorably mentioned (runner-up) for the ACP Dissertation Award in 2014, and this book includes some expanded sections and notes on recent developments. Additionally, the techniques described in this book have been successfully applied to a number of solvers competing in the SAT and MaxSAT International Competitions, winning a total of 18 gold medals between 2011 and 2014. The book will be of interest to researchers and practitioners in artificial intelligence, in particular in the area of machine learning and constraint programming.




Autonomous Search


Book Description

Decades of innovations in combinatorial problem solving have produced better and more complex algorithms. These new methods are better since they can solve larger problems and address new application domains. They are also more complex which means that they are hard to reproduce and often harder to fine-tune to the peculiarities of a given problem. This last point has created a paradox where efficient tools are out of reach of practitioners. Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis of the performances of the solving process -- including short-term reactive reconfiguration and long-term improvement through self-analysis of the performance, offline tuning and online control, and adaptive control and supervised control. Autonomous search "crosses the chasm" and provides engineers and practitioners with systems that are able to autonomously self-tune their performance while effectively solving problems. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms. Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis of the performances of the solving process -- including short-term reactive reconfiguration and long-term improvement through self-analysis of the performance, offline tuning and online control, and adaptive control and supervised control. Autonomous search "crosses the chasm" and provides engineers and practitioners with systems that are able to autonomously self-tune their performance while effectively solving problems. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.




Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems


Book Description

This book constitutes the refereed proceedings of the 9th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR 2012, held in Nantes, France, in May/June 2012. The 26 revised full papers presented were carefully reviewed and selected from 64 submissions. The papers are focused on both theoretical and practical, application-oriented issues in combinatorial optimization and feature current research with a special focus on inference and relaxation methods, integration methods, modeling methods, innovative applications of CP/AI/OR techniques, and implementation of CP/AI/OR techniques and optimization systems.




Logic-Based Program Synthesis and Transformation


Book Description

This book constitutes the thoroughly refereed post-conference proceedings of the 25th International Symposium on Logic-Based Program Synthesis and Transformation, LOPSTR 2015, held in Siena, Italy, in July 2015. The 21 revised full papers presented together with 3 invited talks were carefully reviewed and selected from 30 submissions. The aim of the LOPSTR series is to stimulate and promote international research and collaboration on logic-based program development. LOPSTR is open to contributions in all aspects of logic-based program development, all stages of the software life cycle, and issues of both programming-in-the-small and programming-in-the-large.




Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems


Book Description

This volume is a compilation of the research program of the 10th International Conference on the Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming, CPAIOR 2013, held at Yorktown Heights, NY, USA, in May 2013. This volume contains 20 full papers and 11 short papers that were carefully reviewed and selected from 71 submissions. The papers focus on new techniques or applications in the intersection of constraint programming (CP), artificial intelligence (AI) and operations research (OR).




Learning and Intelligent Optimization


Book Description

This book constitutes the thoroughly refereed post-conference proceedings of the 10th International Conference on Learning and Optimization, LION 10, which was held on Ischia, Italy, in May/June 2016. The 14 full papers presented together with 9 short papers and 2 GENOPT papers were carefully reviewed and selected from 47 submissions. The papers address all fields between machine learning, artificial intelligence, mathematical programming and algorithms for hard optimization problems. Special focus is given to new ideas and methods; challenges and opportunities in various application areas; general trends, and specific developments.




Machine Learning, Optimization, and Data Science


Book Description

This two-volume set, LNCS 12565 and 12566, constitutes the refereed proceedings of the 6th International Conference on Machine Learning, Optimization, and Data Science, LOD 2020, held in Siena, Italy, in July 2020. The total of 116 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 209 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications.




Advances in Soft Computing


Book Description

This volume constitutes the proceedings of the 18th Mexican Conference on Artificial Intelligence, MICAI 2019, held in Xalapa, Mexico, in October/November 2019. The 59 full papers presented in this volume were carefully reviewed and selected from 148 submissions. They cover topics such as: machine learning; optimization and planning; fuzzy systems, reasoning and intelligent applications; and vision and robotics.




Learning and Intelligent Optimization


Book Description

This book constitutes the proceedings of the 7th International Conference on Learning and Optimization, LION 7, which was held in Catania, Italy, in January 2013. The 49 contributions presented in this volume were carefully reviewed and selected from 101 submissions. They explore the intersections and uncharted territories between machine learning, artificial intelligence, mathematical programming and algorithms for hard optimization problems.




Principles and Practice of Constraint Programming


Book Description

This book constitutes the refereed conference proceedings of the 22nd International Conference on Principles and Practice of Constraint Programming, CP 2016, held in Toulouse, France, in September 2016. The 63 revised regular papers presented together with 4 short papers and the abstracts of 4 invited talks were carefully reviewed and selected from 157 submissions. The scope of CP 2016 includes all aspects of computing with constraints, including theory, algorithms, environments, languages, models, systems, and applications such as decision making, resource allocation, scheduling, configuration, and planning. The papers are grouped into the following tracks: technical track; application track; computational sustainability track; CP and biology track; music track; preference, social choice, and optimization track; testing and verification track; and journal-first and sister conferences track.