Instrumental Analysis in the Biological Sciences


Book Description

Instrumental techniques of analysis have now moved from the confines of the chemistry laboratory to form an indispensable part of the analytical armoury of many workers involved in the biological sciences. It is now quite out of the question to considcr a laboratory dealing with the analysis of biological materials that is not equipped with an extensive range of instrumentation. Recent years have also seen a dramatic improvement in the ease with which such instruments can be used, and the quality and quantity of the analytical data that they can produce. This is due in no sm all part to the ubiquitous use of microprocessors and computers for instrumental control. However, under these circumstances there is areal danger of the analyst adopting a 'black box' mentality and not treating the analytical data produced in accordance with the limitations that may be inherent in the method used. Such a problem can only be overcome if the operator is fully aware of both the theoretical and instrumental constraints relevant to the technique in question. As the complexity and sheer volume of material in undergraduate courses increases, there is a tendency to reduce the amount of fundamental material that is taught prior to embarking on the more applied aspects. This is nowhere more apparent than in the teaching of instrumental techniques of analysis.




Instrumental Biology, Or The Disunity of Science


Book Description

Do the sciences aim to uncover the structure of nature, or are they ultimately a practical means of controlling our environment? In Instrumental Biology, or the Disunity of Science, Alexander Rosenberg argues that while physics and chemistry can develop laws that reveal the structure of natural phenomena, biology is fated to be a practical, instrumental discipline. Because of the complexity produced by natural selection, and because of the limits on human cognition, scientists are prevented from uncovering the basic structure of biological phenomena. Consequently, biology and all of the disciplines that rest upon it—psychology and the other human sciences—must aim at most to provide practical tools for coping with the natural world rather than a complete theoretical understanding of it.







Instrumental Analytical Chemistry


Book Description

Analytical chemistry today is almost entirely instrumental analytical chemistry and it is performed by many scientists and engineers who are not chemists. Analytical instrumentation is crucial to research in molecular biology, medicine, geology, food science, materials science, and many other fields. With the growing sophistication of laboratory equipment, there is a danger that analytical instruments can be regarded as "black boxes" by those using them. The well-known phrase "garbage in, garbage out" holds true for analytical instrumentation as well as computers. This book serves to provide users of analytical instrumentation with an understanding of their instruments. This book is written to teach undergraduate students and those working in chemical fields outside analytical chemistry how contemporary analytical instrumentation works, as well as its uses and limitations. Mathematics is kept to a minimum. No background in calculus, physics, or physical chemistry is required. The major fields of modern instrumentation are covered, including applications of each type of instrumental technique. Each chapter includes: A discussion of the fundamental principles underlying each technique Detailed descriptions of the instrumentation. An extensive and up to date bibliography End of chapter problems Suggested experiments appropriate to the technique where relevant This text uniquely combines instrumental analysis with organic spectral interpretation (IR, NMR, and MS). It provides detailed coverage of sampling, sample handling, sample storage, and sample preparation. In addition, the authors have included many instrument manufacturers’ websites, which contain extensive resources.




Undergraduate Instrumental Analysis


Book Description

Completely rewritten, revised, and updated, this Sixth Edition reflects the latest technologies and applications in spectroscopy, mass spectrometry, and chromatography. It illustrates practices and methods specific to each major chemical analytical technique while showcasing innovations and trends currently impacting the field. Many of the




Instrumental Methods in Electrochemistry


Book Description

Using 372 references and 211 illustrations, this book underlines the fundamentals of electrochemistry essential to the understanding of laboratory experiments. It treats not only the fundamental concepts of electrode reactions, but also covers the methodology and practical application of the many versatile electrochemical techniques available. - Underlines the fundamentals of electrochemistry essential to the understanding of laboratory experiments - Treats the fundamental concepts of electrode reactions - Covers the methodology and practical application of the many versatile electrochemical techniques available




Modern Instrumental Analysis


Book Description

Modern Instrumental Analysis covers the fundamentals of instrumentation and provides a thorough review of the applications of this technique in the laboratory. It will serve as an educational tool as well as a first reference book for the practicing instrumental analyst. The text covers five major sections:1. Overview, Sampling, Evaluation of Physical Properties, and Thermal Analysis2. Spectroscopic Methods 3. Chromatographic Methods 4. Electrophoretic and Electrochemical Methods 5. Combination Methods, Unique Detectors, and Problem Solving Each section has a group of chapters covering important aspects of the titled subject, and each chapter includes applications that illustrate the use of the methods. The chapters also include an appropriate set of review questions.* Covers the fundamentals of instrumentation as well as key applications * Each chapter includes review questions that reinforce concepts * Serves as a quick reference and comprehensive guidebook for practitioners and students alike




Element Analysis of Biological Samples


Book Description

Despite the development of innovative new analytical techniques for biological trace element research, today's trace element investigators face formidable obstacles to obtaining reliable data. This complete reference identifies and assesses the challenges the analyst encounters at each stage of an analysis, and discusses the effects of various techniques on the sample. Three internationally recognized scientists and authors consider the effects of the numerous collection, storage, and sample preparatory techniques used in sample analysis. Proper analytical quality control, including such critical factors as sampling and sample preparation, specimen preservation and storage, and ashing, is examined. The book also looks at sample preparation methods unique to various instruments and speciation chemistry issues, and examines the link between chemical analysis and specimen banking. A previously unrecognized source of error, presampling factors, is also discussed.




Practical Instrumental Analysis


Book Description

This practical book in instrumental analytics conveys an overview of important methods of analysis and enables the reader to realistically learn the (principally technology-independent) working techniques the analytical chemist uses to develop methods and conduct validation. What is to be conveyed to the student is the fact that analysts in their capacity as problem-solvers perform services for certain groups of customers, i.e., the solution to the problem should in any case be processed in such a way as to be "fit for purpose". The book presents sixteen experiments in analytical chemistry laboratory courses. They consist of the classical curriculum used at universities and universities of applied sciences with chromatographic procedures, atom spectrometric methods, sensors and special methods (e.g. field flow fractionation, flow injection analysis and N-determination according to Kjeldahl). The carefully chosen combination of theoretical description of the methods of analysis and the detailed instructions given are what characterizes this book. The instructions to the experiments are so detailed that the measurements can, for the most part, be taken without the help of additional literature. The book is complemented with tips for effective literature and database research on the topics of organization and the practical workflow of experiments in analytical laboratory, on the topic of the use of laboratory logs as well as on writing technical reports and grading them (Evaluation Guidelines for Laboratory Experiments). A small introduction to Quality Management, a brief glance at the history of analytical chemistry as well as a detailed appendix on the topic of safety in analytical laboratories and a short introduction to the new system of grading and marking chemicals using the "Globally Harmonized System of Classification and Labelling of Chemicals (GHS)", round off this book. This book is therefore an indispensable workbook for students, internship assistants and lecturers (in the area of chemistry, biotechnology, food technology and environmental technology) in the basic training program of analytics at universities and universities of applied sciences.




Beyond the Molecular Frontier


Book Description

Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.