Integral and Inverse Reinforcement Learning for Optimal Control Systems and Games
Author : Bosen Lian
Publisher : Springer Nature
Page : 278 pages
File Size : 46,94 MB
Release :
Category :
ISBN : 3031452526
Author : Bosen Lian
Publisher : Springer Nature
Page : 278 pages
File Size : 46,94 MB
Release :
Category :
ISBN : 3031452526
Author : Rushikesh Kamalapurkar
Publisher : Springer
Page : 305 pages
File Size : 41,74 MB
Release : 2018-05-10
Category : Technology & Engineering
ISBN : 331978384X
Reinforcement Learning for Optimal Feedback Control develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems. In order to achieve learning under uncertainty, data-driven methods for identifying system models in real-time are also developed. The book illustrates the advantages gained from the use of a model and the use of previous experience in the form of recorded data through simulations and experiments. The book’s focus on deterministic systems allows for an in-depth Lyapunov-based analysis of the performance of the methods described during the learning phase and during execution. To yield an approximate optimal controller, the authors focus on theories and methods that fall under the umbrella of actor–critic methods for machine learning. They concentrate on establishing stability during the learning phase and the execution phase, and adaptive model-based and data-driven reinforcement learning, to assist readers in the learning process, which typically relies on instantaneous input-output measurements. This monograph provides academic researchers with backgrounds in diverse disciplines from aerospace engineering to computer science, who are interested in optimal reinforcement learning functional analysis and functional approximation theory, with a good introduction to the use of model-based methods. The thorough treatment of an advanced treatment to control will also interest practitioners working in the chemical-process and power-supply industry.
Author : Inga Charaja, Juan Jairo
Publisher : KIT Scientific Publishing
Page : 264 pages
File Size : 18,90 MB
Release : 2021-07-12
Category : Technology & Engineering
ISBN : 3731510804
This work addresses inverse dynamic games, which generalize the inverse problem of optimal control, and where the aim is to identify cost functions based on observed optimal trajectories. The identified cost functions can describe individual behavior in cooperative systems, e.g. human behavior in human-machine haptic shared control scenarios.
Author : Frank L. Lewis
Publisher : John Wiley & Sons
Page : 498 pages
File Size : 30,73 MB
Release : 2013-01-28
Category : Technology & Engineering
ISBN : 1118453972
Reinforcement learning (RL) and adaptive dynamic programming (ADP) has been one of the most critical research fields in science and engineering for modern complex systems. This book describes the latest RL and ADP techniques for decision and control in human engineered systems, covering both single player decision and control and multi-player games. Edited by the pioneers of RL and ADP research, the book brings together ideas and methods from many fields and provides an important and timely guidance on controlling a wide variety of systems, such as robots, industrial processes, and economic decision-making.
Author : Frank L. Lewis
Publisher : John Wiley & Sons
Page : 552 pages
File Size : 15,10 MB
Release : 2012-03-20
Category : Technology & Engineering
ISBN : 1118122720
A NEW EDITION OF THE CLASSIC TEXT ON OPTIMAL CONTROL THEORY As a superb introductory text and an indispensable reference, this new edition of Optimal Control will serve the needs of both the professional engineer and the advanced student in mechanical, electrical, and aerospace engineering. Its coverage encompasses all the fundamental topics as well as the major changes that have occurred in recent years. An abundance of computer simulations using MATLAB and relevant Toolboxes is included to give the reader the actual experience of applying the theory to real-world situations. Major topics covered include: Static Optimization Optimal Control of Discrete-Time Systems Optimal Control of Continuous-Time Systems The Tracking Problem and Other LQR Extensions Final-Time-Free and Constrained Input Control Dynamic Programming Optimal Control for Polynomial Systems Output Feedback and Structured Control Robustness and Multivariable Frequency-Domain Techniques Differential Games Reinforcement Learning and Optimal Adaptive Control
Author : Draguna L. Vrabie
Publisher : IET
Page : 305 pages
File Size : 43,6 MB
Release : 2013
Category : Computers
ISBN : 1849194890
The book reviews developments in the following fields: optimal adaptive control; online differential games; reinforcement learning principles; and dynamic feedback control systems.
Author : Jennie Si
Publisher : John Wiley & Sons
Page : 670 pages
File Size : 49,3 MB
Release : 2004-08-02
Category : Technology & Engineering
ISBN : 9780471660545
A complete resource to Approximate Dynamic Programming (ADP), including on-line simulation code Provides a tutorial that readers can use to start implementing the learning algorithms provided in the book Includes ideas, directions, and recent results on current research issues and addresses applications where ADP has been successfully implemented The contributors are leading researchers in the field
Author : Richard S. Sutton
Publisher : MIT Press
Page : 549 pages
File Size : 39,58 MB
Release : 2018-11-13
Category : Computers
ISBN : 0262352702
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Author : Frank L. Lewis
Publisher : John Wiley & Sons
Page : 552 pages
File Size : 37,7 MB
Release : 2012-02-01
Category : Technology & Engineering
ISBN : 0470633492
A NEW EDITION OF THE CLASSIC TEXT ON OPTIMAL CONTROL THEORY As a superb introductory text and an indispensable reference, this new edition of Optimal Control will serve the needs of both the professional engineer and the advanced student in mechanical, electrical, and aerospace engineering. Its coverage encompasses all the fundamental topics as well as the major changes that have occurred in recent years. An abundance of computer simulations using MATLAB and relevant Toolboxes is included to give the reader the actual experience of applying the theory to real-world situations. Major topics covered include: Static Optimization Optimal Control of Discrete-Time Systems Optimal Control of Continuous-Time Systems The Tracking Problem and Other LQR Extensions Final-Time-Free and Constrained Input Control Dynamic Programming Optimal Control for Polynomial Systems Output Feedback and Structured Control Robustness and Multivariable Frequency-Domain Techniques Differential Games Reinforcement Learning and Optimal Adaptive Control
Author : Marc Peter Deisenroth
Publisher : KIT Scientific Publishing
Page : 226 pages
File Size : 11,55 MB
Release : 2010
Category : Electronic computers. Computer science
ISBN : 3866445695
This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model uncertainties consistently into account during long-term planning to reduce model bias. Second, we propose principled algorithms for robust filtering and smoothing in GP dynamic systems.