Integral Transforms in Science and Engineering


Book Description

Integral transforms are among the main mathematical methods for the solution of equations describing physical systems, because, quite generally, the coupling between the elements which constitute such a system-these can be the mass points in a finite spring lattice or the continuum of a diffusive or elastic medium-prevents a straightforward "single-particle" solution. By describing the same system in an appropriate reference frame, one can often bring about a mathematical uncoupling of the equations in such a way that the solution becomes that of noninteracting constituents. The "tilt" in the reference frame is a finite or integral transform, according to whether the system has a finite or infinite number of elements. The types of coupling which yield to the integral transform method include diffusive and elastic interactions in "classical" systems as well as the more common quantum-mechanical potentials. The purpose of this volume is to present an orderly exposition of the theory and some of the applications of the finite and integral transforms associated with the names of Fourier, Bessel, Laplace, Hankel, Gauss, Bargmann, and several others in the same vein. The volume is divided into four parts dealing, respectively, with finite, series, integral, and canonical transforms. They are intended to serve as independent units. The reader is assumed to have greater mathematical sophistication in the later parts, though.







Integral Methods in Science and Engineering


Book Description

An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques and their use in specific science and engineering problems. This book will be valuable for researchers in applied mathematics, physics, and mechanical and electrical engineering. It will likewise be a useful study guide for graduate students in these disciplines, and for various other professionals who use integration as an essential technique in their work.




Integral Transforms and Engineering


Book Description

With the aim to better understand nature, mathematical tools are being used nowadays in many different fields. The concept of integral transforms, in particular, has been found to be a useful mathematical tool for solving a variety of problems not only in mathematics, but also in various other branches of science, engineering, and technology. Integral Transforms and Engineering: Theory, Methods, and Applications presents a mathematical analysis of integral transforms and their applications. The book illustrates the possibility of obtaining transfer functions using different integral transforms, especially when mapping any function into the frequency domain. Various differential operators, models, and applications are included such as classical derivative, Caputo derivative, Caputo-Fabrizio derivative, and Atangana-Baleanu derivative. This book is a useful reference for practitioners, engineers, researchers, and graduate students in mathematics, applied sciences, engineering, and technology fields.







Integral Transforms and Their Applications


Book Description

Keeping the style, content, and focus that made the first edition a bestseller, Integral Transforms and their Applications, Second Edition stresses the development of analytical skills rather than the importance of more abstract formulation. The authors provide a working knowledge of the analytical methods required in pure and applied mathematics, physics, and engineering. The second edition includes many new applications, exercises, comments, and observations with some sections entirely rewritten. It contains more than 500 worked examples and exercises with answers as well as hints to selected exercises. The most significant changes in the second edition include: New chapters on fractional calculus and its applications to ordinary and partial differential equations, wavelets and wavelet transformations, and Radon transform Revised chapter on Fourier transforms, including new sections on Fourier transforms of generalized functions, Poissons summation formula, Gibbs phenomenon, and Heisenbergs uncertainty principle A wide variety of applications has been selected from areas of ordinary and partial differential equations, integral equations, fluid mechanics and elasticity, mathematical statistics, fractional ordinary and partial differential equations, and special functions A broad spectrum of exercises at the end of each chapter further develops analytical skills in the theory and applications of transform methods and a deeper insight into the subject A systematic mathematical treatment of the theory and method of integral transforms, the book provides a clear understanding of the subject and its varied applications in mathematics, applied mathematics, physical sciences, and engineering.




Integral Transforms and Their Applications, Third Edition


Book Description

Integral Transforms and Their Applications, Third Edition covers advanced mathematical methods for many applications in science and engineering. The book is suitable as a textbook for senior undergraduate and first-year graduate students and as a reference for professionals in mathematics, engineering, and applied sciences. It presents a systematic development of the underlying theory as well as a modern approach to Fourier, Laplace, Hankel, Mellin, Radon, Gabor, wavelet, and Z transforms and their applications. New to the Third Edition New material on the historical development of classical and modern integral transforms New sections on Fourier transforms of generalized functions, the Poisson summation formula, the Gibbs phenomenon, and the Heisenberg uncertainty principle Revised material on Laplace transforms and double Laplace transforms and their applications New examples of applications in mechanical vibrations, electrical networks, quantum mechanics, integral and functional equations, fluid mechanics, mathematical statistics, special functions, and more New figures that facilitate a clear understanding of physical explanations Updated exercises with solutions, tables of integral transforms, and bibliography Through numerous examples and end-of-chapter exercises, this book develops readers’ analytical and computational skills in the theory and applications of transform methods. It provides accessible working knowledge of the analytical methods and proofs required in pure and applied mathematics, physics, and engineering, preparing readers for subsequent advanced courses and research in these areas.




Integral Transforms and Their Applications


Book Description

This book is intended to serve as introductory and reference material for the application of integral transforms to a range of common mathematical problems. It has its im mediate origin in lecture notes prepared for senior level courses at the Australian National University, although I owe a great deal to my colleague Barry Ninham, a matter to which I refer below. In preparing the notes for publication as a book, I have added a considerable amount of material ad- tional to the lecture notes, with the intention of making the book more useful, particularly to the graduate student - volved in the solution of mathematical problems in the physi cal, chemical, engineering and related sciences. Any book is necessarily a statement of the author's viewpoint, and involves a number of compromises. My prime consideration has been to produce a work whose scope is selective rather than encyclopedic; consequently there are many facets of the subject which have been omitted--in not a few cases after a preliminary draft was written--because I v believe that their inclusion would make the book too long.




Integral Transforms for Engineers


Book Description

Integral transform methods provide effective ways to solve a variety of problems arising in the engineering, optical, and physical sciences. Suitable as a self-study for practicing engineers and applied mathematicians and as a textbook in graduate-level courses in optics, engineering sciences, physics, and mathematics.




Application of Integral Transforms in Mathematical Physics and Engineering Book


Book Description

In this book, readers will explore the fundamental concepts and applications of integral transformations, including Laplace, Fourier, and Mellin transforms, among others. With clear explanations and real-world examples, this book provides a deep understanding of the power and versatility of integral transformations. Whether you’re a student, researcher, or practitioner in the fields of mathematics or engineering physics, this book is an invaluable resource for understanding and applying integral transformations to a wide range of problems.