Integral Transforms for Engineers


Book Description

Integral transform methods provide effective ways to solve a variety of problems arising in the engineering, optical, and physical sciences. Suitable as a self-study for practicing engineers and applied mathematicians and as a textbook in graduate-level courses in optics, engineering sciences, physics, and mathematics.




Integral Transforms in Science and Engineering


Book Description

Integral transforms are among the main mathematical methods for the solution of equations describing physical systems, because, quite generally, the coupling between the elements which constitute such a system-these can be the mass points in a finite spring lattice or the continuum of a diffusive or elastic medium-prevents a straightforward "single-particle" solution. By describing the same system in an appropriate reference frame, one can often bring about a mathematical uncoupling of the equations in such a way that the solution becomes that of noninteracting constituents. The "tilt" in the reference frame is a finite or integral transform, according to whether the system has a finite or infinite number of elements. The types of coupling which yield to the integral transform method include diffusive and elastic interactions in "classical" systems as well as the more common quantum-mechanical potentials. The purpose of this volume is to present an orderly exposition of the theory and some of the applications of the finite and integral transforms associated with the names of Fourier, Bessel, Laplace, Hankel, Gauss, Bargmann, and several others in the same vein. The volume is divided into four parts dealing, respectively, with finite, series, integral, and canonical transforms. They are intended to serve as independent units. The reader is assumed to have greater mathematical sophistication in the later parts, though.




Transforms and Applications Primer for Engineers with Examples and MATLAB®


Book Description

Transforms and Applications Primer for Engineers with Examples and MATLAB® is required reading for engineering and science students, professionals, and anyone working on problems involving transforms. This invaluable primer contains the most essential integral transforms that both practicing engineers and students need to understand. It provides a large number of examples to explain the use of transforms in different areas, including circuit analysis, differential equations, signals and systems, and mechanical vibrations. Includes an appendix with suggestions and explanations to help you optimize your use of MATLAB Laplace and Fourier transforms are by far the most widely used and most useful of all integral transforms, so they are given a more extensive treatment in this book, compared to other texts that include them. Offering numerous MATLAB functions created by the author, this comprehensive book contains several appendices to complement the main subjects. Perhaps the most important feature is the extensive tables of transforms, which are provided to supplement the learning process. This book presents advanced material in a format that makes it easier to understand, further enhancing its immense value as a teaching tool for engineers and research scientists in academia and industry, as well as students in science and engineering.




Integral Transforms and Their Applications


Book Description

This book is intended to serve as introductory and reference material for the application of integral transforms to a range of common mathematical problems. It has its im mediate origin in lecture notes prepared for senior level courses at the Australian National University, although I owe a great deal to my colleague Barry Ninham, a matter to which I refer below. In preparing the notes for publication as a book, I have added a considerable amount of material ad- tional to the lecture notes, with the intention of making the book more useful, particularly to the graduate student - volved in the solution of mathematical problems in the physi cal, chemical, engineering and related sciences. Any book is necessarily a statement of the author's viewpoint, and involves a number of compromises. My prime consideration has been to produce a work whose scope is selective rather than encyclopedic; consequently there are many facets of the subject which have been omitted--in not a few cases after a preliminary draft was written--because I v believe that their inclusion would make the book too long.




Complex Variables and the Laplace Transform for Engineers


Book Description

Acclaimed text on engineering math for graduate students covers theory of complex variables, Cauchy-Riemann equations, Fourier and Laplace transform theory, Z-transform, and much more. Many excellent problems.




Integral Transform Techniques for Green's Function


Book Description

This book describes mathematical techniques for integral transforms in a detailed but concise manner. The techniques are subsequently applied to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations. Green’s functions for beams, plates and acoustic media are also shown, along with their mathematical derivations. The Cagniard-de Hoop method for double inversion is described in detail and 2D and 3D elastodynamic problems are treated in full. This new edition explains in detail how to introduce the branch cut for the multi-valued square root function. Further, an exact closed form Green’s function for torsional waves is presented, as well as an application technique of the complex integral, which includes the square root function and an application technique of the complex integral.




Mathematical Methods for Engineers and Scientists 2


Book Description

Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student-oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous clearly stated, completely worked out examples together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to help students feel comfortable and confident in using advanced mathematical tools in junior, senior, and beginning graduate courses.




Applied Laplace Transforms and z-Transforms for Scientists and Engineers


Book Description

The theory of Laplace transformation is an important part of the mathematical background required for engineers, physicists and mathematicians. Laplace transformation methods provide easy and effective techniques for solving many problems arising in various fields of science and engineering, especially for solving differential equations. What the Laplace transformation does in the field of differential equations, the z-transformation achieves for difference equations. The two theories are parallel and have many analogies. Laplace and z transformations are also referred to as operational calculus, but this notion is also used in a more restricted sense to denote the operational calculus of Mikusinski. This book does not use the operational calculus of Mikusinski, whose approach is based on abstract algebra and is not readily accessible to engineers and scientists. The symbolic computation capability of Mathematica can now be used in favor of the Laplace and z-transformations. The first version of the Mathematica Package LaplaceAndzTransforrns developed by the author appeared ten years ago. The Package computes not only Laplace and z-transforms but also includes many routines from various domains of applications. Upon loading the Package, about one hundred and fifty new commands are added to the built-in commands of Mathematica. The code is placed in front of the already built-in code of Laplace and z-transformations of Mathematica so that built-in functions not covered by the Package remain available. The Package substantially enhances the Laplace and z-transformation facilities of Mathematica. The book is mainly designed for readers working in the field of applications.




An Introduction to Integral Transforms


Book Description

'An Introduction to Integral Transforms' is meant for students pursuing graduate and post graduate studies in Science and Engineering. It contains discussions on almost all transforms for normal users of the subject. The content of the book is explained from a rudimentary stand point to an advanced level for convenience of its readers. Pre‐requisite for understanding the subject matter of the book is some knowledge on the complex variable techniques. Please note: Taylor & Francis does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.