Integrated Computational/experimental Study of Turbulence Modification and Mixing Enhancement in Swirling Jets


Book Description

Swirling jet flows have been studied experimentally and computationally and the results have been compared with theory. Three-component Laser Doppler Anemometry (LDA) measurements have been carried out for swirling jets of various strengths and swirl distributions. Radial profiles of velocity have been obtained from the jet exit to 50 diameters downstream. The experimental results are consistent with previous results and with similarity theory for weakly swirling turbulent jets. However, the parametric range and spatial domain of the current data set makes it suitable for validation. Computational simulations have also been performed using a combination of Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) approaches. The results have been validated with experimental data and used to explore the mechanisms behind the increased mixing enhancement observed. The combined experimental/computational effort is still ongoing, but the experiences to date have demonstrated the effectiveness of such an approach.




An Experimental Study of Swirling Jets


Book Description

The mean flow properties and the instantaneous flow structures of the jets are then investigated. The introduction and increase of swirl result in a higher jet growth, decay and turbulent intensity, the formation of an off-axis axial velocity maximum and the occurrence of vortex breakdown. The swirl-induced jet growth enhancement can be categorized into three regimes: a low swirl regime in which there is a limited enhancement, a moderate swirl regime in which the enhancement scales with swirl, and a high swirl regime in which vortex breakdown dominates the process. The jet growth behavior in the high swirl regime is found to be dependent on the structure of the jet and the vortex breakdown configuration. A significant change in the flow structures and certain mean flow properties including the centerline and local maximum axial velocity decay are observed in the low and the moderate swirl regimes. These properties appear to be less sensitive to swirl in the high swirl regime after the occurrence of vortex breakdown. The effects of Reynolds number on swirling jets may not be identical to that on a non-swirling jet. The statistical characteristics measured show that low velocity occasions in the vicinity of the jet centerline start to appear at a sufficiently high degree of swirl. These occasions increase with swirl until the eventual occurrence of vortex breakdown. The statistical characteristics of jets that have undergone vortex breakdown are very similar, as they are dominated by the vortex breakdown phenomenon. The mean flow and the statistical measurements also reveal the presence of an unstable vortex breakdown that is difficult to detect using flow visualization and instantanous velocity field measurements.




Engineering Turbulence Modelling and Experiments 5


Book Description

Turbulence is one of the key issues in tackling engineering flow problems. As powerful computers and accurate numerical methods are now available for solving the flow equations, and since engineering applications nearly always involve turbulence effects, the reliability of CFD analysis depends increasingly on the performance of the turbulence models. This series of symposia provides a forum for presenting and discussing new developments in the area of turbulence modelling and measurements, with particular emphasis on engineering-related problems. The papers in this set of proceedings were presented at the 5th International Symposium on Engineering Turbulence Modelling and Measurements in September 2002. They look at a variety of areas, including: Turbulence modelling; Direct and large-eddy simulations; Applications of turbulence models; Experimental studies; Transition; Turbulence control; Aerodynamic flow; Aero-acoustics; Turbomachinery flows; Heat transfer; Combustion systems; Two-phase flows. These papers are preceded by a section containing 6 invited papers covering various aspects of turbulence modelling and simulation as well as their practical application, combustion modelling and particle-image velocimetry.




Unified RANS/LES Simulations of Turbulent Swirling Jet Flows


Book Description

Swirl flows are useful in many engineering and environmental applications. They can be utilized to reduce emissions of pollutants, to improve ignition stability, and to stabilize a flame for clean combustion. The majority of swirl flows include both wall-bounded regions and free shear flow regions. Experimental research cannot provide all the information needed for the study of these flows. Numerical simulations of swirl flows provide more insights into the structure of the swirl flows. The direct numerical simulation (DNS) method is an accurate and reliable tool for flow simulations but computationally expensive. Reynolds-averaged Navier-Stokes (RANS) methods are computationally less expensive for the simulation of wall-bounded and free shear flows, but they turn out to be not well appropriate for turbulent swirling jet simulations. Large-eddy simulation (LES) is an appropriate modeling approach for turbulent swirl flow simulations, but the calculation of the free swirling jet using LES needs fluctuating inlet velocity conditions. The generation of such fluctuating velocity fields could be done by performing a LES of the nozzle flow. Unfortunately, the computational costs of such LES are comparable to those of DNS. A need thus arises to apply a hybrid RANS/LES method that combines two main advantages, the capability of LES methods in capturing instantaneous flow structures and the low computational costs of RANS methods. In this study, the performance of two hybrid approaches, a segregated RANS/LES method, and a unified RANS/LES method, is investigated regarding the simulation of turbulent swirling jet flows. The segregated model combines a RANS model in the nozzle region and a LES model in the jet region, whereas the unified model combines a RANS model in near-wall regions with a LES model away from the wall. This study provides evidence that the unified turbulence model is a better tool to predict swirl flows and, more importantly, a better tool to calculate the vortex breakdown. The accuracy of the numerical predictions is confirmed by comparing available experimental data for non-swirling and swirling jet flows with computational results. The validated model is used to study the mechanism of swirl effects, vortex breakdown, and scalar mixing.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




Injection and Mixing in Turbulent Flow


Book Description

Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.




Experimental Investigation of the Structure of Turbulent Swirling Jets


Book Description

Experimental investigations were carried out in both non-swirling and swirling jets at a Re = 105. A stereoscopic particle image velocimetry (SPIV) system was used to acquire the measurements in both axial-radial and radial-tangential planes at x/D = (1-10). Multiple test cases were taken where both the swirl magnitude and swirl distribution was adjusted. Proper Orthogonal Decomposition (POD) was then applied to the measurements to characterize turbulence structure. The results indicate that swirl causes the structure to be more ordered and shifts the relative amount of energy from axisymmetric structure to azimuthal structure.