The Nuclear Envelope


Book Description

This volume provides a wide range of protocols used in studying the nuclear envelope, with special attention to the experimental adjustments that may be required to successfully investigate this complex organelle in cells from various organisms. The Nuclear Envelope: Methods and Protocols is divided into five sections: Part I – Nuclear Envelope Isolation; Part II – Nuclear Envelope Protein Interactions, Localization, and Dynamics; Part III – Nuclear Envelope Interactions with the Cytoskeleton; Part IV – Nuclear Envelope-Chromatin Interactions; and Part V – Nucleo-Cytoplasmic Transport. Many of the modifications discussed in this book have only been circulated within laboratories that have conducted research in this field for many years. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting edge and thorough, The Nuclear Envelope: Methods and Protocols is a timely resource for researchers who have joined this dynamic and rapidly growing field.




Yeast Genetics


Book Description

Yeast Genetics: Methods and Protocols is a collection of methods to best study and manipulate Saccharomyces cerevisiae, a truly genetic powerhouse. The simple nature of a single cell eukaryotic organism, the relative ease of manipulating its genome and the ability to interchangeably exist in both haploid and diploid states have always made it an attractive model organism. Genes can be deleted, mutated, engineered and tagged at will. Saccharomyces cerevisiae has played a major role in the elucidation of multiple conserved cellular processes including MAP kinase signaling, splicing, transcription and many others. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Yeast Genetics: Methods and Protocols will provide a balanced blend of classic and more modern genetic methods relevant to a wide range of research areas and should be widely used as a reference in yeast labs.




The LINC Complex


Book Description




Nuclear Pore Complexes and Nucleocytoplasmic Transport - Methods


Book Description

Volume 122 of Methods in Cell Biology describes modern tools and techniques used to study nuclear pore complexes and nucleocytoplasmic transport in diverse eukaryotic model systems (including mammalian cells, Xenopus, C. elegans, yeast). The volume enables investigators to analyze nuclear pore complex structure, assembly, and dynamics; to evaluate protein and RNA trafficking through the nuclear envelope; and to design in vivo or in vitro assays appropriate to their research needs. Beyond the study of nuclear pores and transport as such, these protocols will also be helpful to scientists characterizing gene regulation, signal transduction, cell cycle, viral infections, or aging. The NPC being one of the largest multiprotein complexes in the cell, some protocols will also be of interest for people currently characterizing other macromolecular assemblies. This book is thus designed for laboratory use by graduate students, technicians, and researchers in many molecular and cellular disciplines. - Describes modern tools and techniques used to study nuclear pore complexes and nucleocytoplasmic transport in diverse eukaryotic model systems (mammalian cells, Xenopus, C. elegans, yeast) - Chapters are written by experts in the field - Cutting-edge material




A Closer Look at Membrane Proteins


Book Description

A Closer Look at Membrane Proteins opens with a description of the insulin-like growth factor system, with focus on the insulin-like growth factor receptors and functions associated with them. The data on membrane proteins, their N-glycome and oxidation status id related to the authors' findings on the receptors in different physiological and pathological conditions, such as normal and abnormal tissue growth and development. Next, a review of the current methods used to prepare and study membrane proteins is presented, with focus on large scale simulations and special emphasis on scalable parallel methods. In closing, commandments surrounding integral membrane protein expression and purification, integral membrane protein biochemistry, integral membrane protein functionality studies and integral membrane protein high-resolution structures are described.




Centromeres and Kinetochores


Book Description

This book presents the latest advances concerning the regulation of chromosome segregation during cell division by means of centromeres and kinetochores. The authors cover both state-of-the-art techniques and a range of species and model systems, shedding new light on the molecular mechanisms controlling the transmission of genetic material between cell divisions and from parent to offspring. The chapters cover five major areas related to the current study of centromeres and kinetochores: 1) their genetic and epigenetic features, 2) key breakthroughs at the molecular, proteomic, imaging and biochemical level, 3) the constitutive centromere proteins, 4) the role of centromere proteins in the physical process of chromosome segregation and its careful orchestration through elaborate regulation, and 5) intersections with reproductive biology, human health and disease, as well as chromosome evolution. The book offers an informative and provocative guide for newcomers as well as those already acquainted with the field.







ARF Family GTPases


Book Description

For the first time experts in the area of signalling research with a focus on the ARF family have contributed to the production of a title devoted to ARF biology. A comprehensive phylogenetic analysis of the ARF family, tables of the ARF GEFs and ARF GAPs, and more than a dozen chapters describing them in detail are provided. The impact of the ARF proteins on widely diverse aspects of cell biology and cell signalling can be clearly seen from the activities described; including membrane traffic, lipid metabolism, receptor desensitization, mouse development, microtubule dynamics, and bacterial pathogenesis. Anyone interested in understanding the complexities of cell signalling and the integration of signalling networks will benefit from this volume.




Macromolecular Protein Complexes III: Structure and Function


Book Description

This book covers important topics such as the dynamic structure and function of the 26S proteasome, the DNA replication machine: structure and dynamic function and the structural organization and protein–protein interactions in the human adenovirus capsid, to mention but a few. The 18 chapters included here, written by experts in their specific field, are at the forefront of scientific knowledge. The impressive integration of structural data from X-ray crystallography with that from cryo-electron microscopy is apparent throughout the book. In addition, functional aspects are also given a high priority. Chapter 1 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.




Structure and Physics of Viruses


Book Description

This book contemplates the structure, dynamics and physics of virus particles: From the moment they come into existence by self-assembly from viral components produced in the infected cell, through their extracellular stage, until they recognise and infect a new host cell and cease to exist by losing their physical integrity to start a new infectious cycle. (Bio)physical techniques used to study the structure of virus particles and components, and some applications of structure-based studies of viruses are also contemplated. This book is aimed first at M.Sc. students, Ph.D. students and postdoctoral researchers with a university degree in biology, chemistry, physics or related scientific disciplines who share an interest or are actually working on viruses. We have aimed also at providing an updated account of many important concepts, techniques, studies and applications in structural and physical virology for established scientists working on viruses, irrespective of their physical, chemical or biological background and their field of expertise. We have not attempted to provide a collection of for-experts-only reviews focused mainly on the latest research in specific topics; we have not generally assumed that the reader knows all of the jargon and all but the most recent and advanced results in each topic dealt with in this book. In short, we have attempted to write a book basic enough to be useful to M.Sc and Ph.D. students, as well as advanced and current enough to be useful to senior scientists with an interest in Structural and/or Physical Virology.