Integrating Rules and Connectionism for Robust Commonsense Reasoning


Book Description

Along with this framework, the book proposes a set of interrelated new ideas regarding the modeling of commonsense reasoning which are highly relevant to current research in AI and cognitive science and the ongoing methodological debate.




Connectionist-Symbolic Integration


Book Description

A variety of ideas, approaches, and techniques exist -- in terms of both architecture and learning -- and this abundance seems to lead to many exciting possibilities in terms of theoretical advances and application potentials. Despite the apparent diversity, there is clearly an underlying unifying theme: architectures that bring together symbolic and connectionist models to achieve a synthesis and synergy of the two different paradigms, and the learning and knowledge acquisition methods for developing such architectures. More effort needs to be extended to exploit the possibilities and opportunities in this area. This book is the outgrowth of The IJCAI Workshop on Connectionist-Symbolic Integration: From Unified to Hybrid Approaches, held in conjunction with the fourteenth International Joint Conference on Artificial Intelligence (IJCAI '95). Featuring various presentations and discussions, this two-day workshop brought to light many new ideas, controversies, and syntheses which lead to the present volume. This book is concerned with the development, analysis, and application of hybrid connectionist-symbolic models in artificial intelligence and cognitive science. Drawing contributions from a large international group of experts, it describes and compares a variety of models in this area. The types of models discussed cover a wide range of the evolving spectrum of hybrid models, thus serving as a well-balanced progress report on the state of the art. As such, this volume provides an information clearinghouse for various proposed approaches and models that share the common belief that connectionist and symbolic models can be usefully combined and integrated, and such integration may lead to significant advances in understanding intelligence.




Commonsense Reasoning


Book Description

To endow computers with common sense is one of the major long-term goals of artificial intelligence research. One approach to this problem is to formalize commonsense reasoning using mathematical logic. Commonsense Reasoning: An Event Calculus Based Approach is a detailed, high-level reference on logic-based commonsense reasoning. It uses the event calculus, a highly powerful and usable tool for commonsense reasoning, which Erik Mueller demonstrates as the most effective tool for the broadest range of applications. He provides an up-to-date work promoting the use of the event calculus for commonsense reasoning, and bringing into one place information scattered across many books and papers. Mueller shares the knowledge gained in using the event calculus and extends the literature with detailed event calculus solutions that span many areas of the commonsense world. The Second Edition features new chapters on commonsense reasoning using unstructured information including the Watson system, commonsense reasoning using answer set programming, and techniques for acquisition of commonsense knowledge including crowdsourcing. - Understand techniques for automated commonsense reasoning - Incorporate commonsense reasoning into software solutions - Acquire a broad understanding of the field of commonsense reasoning - Gain comprehensive knowledge of the human capacity for commonsense reasoning




From Synapses to Rules


Book Description

One high-level ability of the human brain is to understand what it has learned. This seems to be the crucial advantage in comparison to the brain activity of other primates. At present we are technologically almost ready to artificially reproduce human brain tissue, but we still do not fully understand the information processing and the related biological mechanisms underlying this ability. Thus an electronic clone of the human brain is still far from being realizable. At the same time, around twenty years after the revival of the connectionist paradigm, we are not yet satisfied with the typical subsymbolic attitude of devices like neural networks: we can make them learn to solve even difficult problems, but without a clear explanation of why a solution works. Indeed, to widely use these devices in a reliable and non elementary way we need formal and understandable expressions of the learnt functions. of being tested, manipulated and composed with These must be susceptible other similar expressions to build more structured functions as a solution of complex problems via the usual deductive methods of the Artificial Intelligence. Many effort have been steered in this directions in the last years, constructing artificial hybrid systems where a cooperation between the sub symbolic processing of the neural networks merges in various modes with symbolic algorithms. In parallel, neurobiology research keeps on supplying more and more detailed explanations of the low-level phenomena responsible for mental processes.




Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society


Book Description

This volume features the complete text of all regular papers, posters, and summaries of symposia presented at the 18th annual meeting of the Cognitive Science Society. Papers have been loosely grouped by topic, and an author index is provided in the back. In hopes of facilitating searches of this work, an electronic index on the Internet's World Wide Web is provided. Titles, authors, and summaries of all the papers published here have been placed in an online database which may be freely searched by anyone. You can reach the Web site at: http://www.cse.ucsd.edu/events/cogsci96/proceedings. You may view the table of contents for this volume on the LEA Web site at: http://www.erlbaum.com.




Fuzzy Learning and Applications


Book Description

With low computational complexity and relatively short development time, Fuzzy Logic is an indispensable tool for engineering applications. The field is growing at an unprecedented rate, and there is a need for a book that describes essential tools, applications, examples, and perspectives in the field of fuzzy learning. The editors of Fuzzy Learni




Technologies for Constructing Intelligent Systems 1


Book Description

Intelligent systems enhance the capacities made available by the internet and other computer-based technologies. This book deals with the theory behind the solutions to difficult problems in the construction of intelligent systems. Particular attention is paid to situations in which the available information and data may be imprecise, uncertain, incomplete or of linguistic nature. Various methodologies for these cases are discussed, among which are probabilistic, possibilistic, fuzzy, logical, evidential and network-based frameworks. One purpose of the book is to consider how these methods can be used cooperatively. Topics included in the book include fundamental issues in uncertainty, the rapidly emerging discipline of information aggregation, neural networks, bayesian networks and other network methods, as well as logic-based systems.




Cognitive Science and the Social


Book Description

The rise of cognitive neuroscience is the most important scientific and intellectual development of the last thirty years. Findings pour forth, and major initiatives for brain research continue. The social sciences have responded to this development slowly--for good reasons. The implications of particular controversial findings, such as the discovery of mirror neurons, have been ambiguous, controversial within neuroscience itself, and difficult to integrate with conventional social science. Yet many of these findings, such as those of experimental neuro-economics, pose very direct challenges to standard social science. At the same time, however, the known facts of social science, for example about linguistic and moral diversity, pose a significant challenge to standard neuroscience approaches, which tend to focus on "universal" aspects of human and animal cognition. A serious encounter between cognitive neuroscience and social science is likely to be challenging, and transformative, for both parties. Although a literature has developed on proposals to integrate neuroscience and social science, these proposals go in divergent directions. None of them has a developed conception of social life. This book surveys these issues, introduces the basic alternative conceptions both of the mental world and the social world, and show how, with sufficient modification, they can be fit together in plausible ways. The book is not a "new theory " of anything, but rather an exploration of the critical issues that relate to the social aspects of cognition which expands the topic from the social neuroscience of immediate interpersonal interaction to the whole range of places where social variation interacts with the cognitive. The focus is on the conceptual problems produced by any attempt to take these issues seriously, and also on the new resources and considerations relevant to doing so. But it is also on the need for a revision of social theoretical concepts in order to utilize these resources. The book points to some conclusions, especially about how the process of what was known as socialization needs to be understood in cognitive science friendly terms. But there is no attempt to resolve the underlying issues within cognitive science, which will doubtless persist.




Hybrid Information Systems


Book Description

Hybrid intelligent systems are becoming a very important problem-solving methodology affecting researchers and practitioners in areas ranging from science and technology to business and commerce. This volume focuses on the hybridization of different soft computing technologies and their interactions with hard computing techniques, other intelligent computing frameworks, and agents. Topics covered include: genetic-neurocomputing, neuro-fuzzy systems, genetic-fuzzy systems, genetic-fuzzy neurocomputing, hybrid optimization techniques, interaction with intelligent agents, fusion of soft computing and hard computing techniques, other intelligent systems and hybrid systems applications. The different contributions were presented at the first international workshop on hybrid intelligent systems (HIS1) in Adelaide, Australia.




Recent Advances in Artificial Neural Networks


Book Description

Neural networks represent a new generation of information processing paradigms designed to mimic-in a very limited sense-the human brain. They can learn, recall, and generalize from training data, and with their potential applications limited only by the imaginations of scientists and engineers, they are commanding tremendous popularity and research interest. Over the last four decades, researchers have reported a number of neural network paradigms, however, the newest of these have not appeared in book form-until now. Recent Advances in Artificial Neural Networks collects the latest neural network paradigms and reports on their promising new applications. World-renowned experts discuss the use of neural networks in pattern recognition, color induction, classification, cluster detection, and more. Application engineers, scientists, and research students from all disciplines with an interest in considering neural networks for solving real-world problems will find this collection useful.